Single-nucleus analysis allows robust cell-type classification and helps to establish relationships between chromatin accessibility and cell-type-specific gene expression. Here, using samples from 92 women of several genetic ancestries, we developed a comprehensive chromatin accessibility and gene expression atlas of the breast tissue. Integrated analysis revealed ten distinct cell types, including three major epithelial subtypes (luminal hormone sensing, luminal adaptive secretory precursor (LASP) and basal-myoepithelial), two endothelial and adipocyte subtypes, fibroblasts, T cells, and macrophages.
View Article and Find Full Text PDFUnlabelled: Single-cell transcriptomics studies have begun to identify breast epithelial cell and stromal cell specific transcriptome differences between BRCA1/2 mutation carriers and non-carriers. We generated a single-cell transcriptome atlas of breast tissues from BRCA1, BRCA2 mutation carriers and compared this single-cell atlas of mutation carriers with our previously described single-cell breast atlas of healthy non-carriers. We observed that BRCA1 but not BRCA2 mutations altered the ratio between basal (basal-myoepithelial), luminal progenitor (luminal adaptive secretory precursor, LASP), and mature luminal (luminal hormone sensing) cells in breast tissues.
View Article and Find Full Text PDFMesenchymal stem cells (MSC) are multipotent stem cells that can differentiate into multiple cell types, including osteoblasts, chondrocytes, and adipocytes. Osteoblast differentiation is reduced during osteoporosis development, resulting in reduced bone formation. Further, MSC isolated from different donors possess distinct osteogenic capacity.
View Article and Find Full Text PDFLysine succinylation is a subtype of protein acylation associated with metabolic regulation of succinyl-CoA in the tricarboxylic acid cycle. Deficiency of succinyl-CoA synthetase (SCS), the tricarboxylic acid cycle enzyme catalyzing the interconversion of succinyl-CoA to succinate, results in mitochondrial encephalomyopathy in humans. This report presents a conditional forebrain-specific knockout (KO) mouse model of Sucla2, the gene encoding the ATP-specific beta isoform of SCS, resulting in postnatal deficiency of the entire SCS complex.
View Article and Find Full Text PDFSkeletal muscle dysfunction or reprogramming due to the effects of the cancer secretome is observed in multiple malignancies. Although mouse models are routinely used to study skeletal muscle defects in cancer, because of species specificity of certain cytokines/chemokines in the secretome, a human model system is required. Here, we establish simplified multiple skeletal muscle stem cell lines (hMuSCs), which can be differentiated into myotubes.
View Article and Find Full Text PDFUnlabelled: Study of genomic aberrations leading to immortalization of epithelial cells has been technically challenging due to the lack of isogenic models. To address this, we used healthy primary breast luminal epithelial cells of different genetic ancestry and their hTERT-immortalized counterparts to identify transcriptomic changes associated with immortalization. Elevated expression of TONSL (Tonsoku-like, DNA repair protein) was identified as one of the earliest events during immortalization.
View Article and Find Full Text PDFImproved understanding of local breast biology that favors the development of estrogen receptor negative (ER-) breast cancer (BC) would foster better prevention strategies. We have previously shown that overexpression of specific lipid metabolism genes is associated with the development of ER- BC. We now report results of exposure of MCF-10A and MCF-12A cells, and mammary organoids to representative medium- and long-chain polyunsaturated fatty acids.
View Article and Find Full Text PDFPreclinical studies of primary cancer cells are typically done after tumors are removed from patients or animals at ambient atmospheric oxygen (O, ~21%). However, O concentrations in organs are in the ~3 to 10% range, with most tumors in a hypoxic or 1 to 2% O environment in vivo. Although effects of O tension on tumor cell characteristics in vitro have been studied, these studies are done only after tumors are first collected and processed in ambient air.
View Article and Find Full Text PDFBackground: Microexons are a particular kind of exon of less than 30 nucleotides in length. More than 60% of annotated human microexons were found to have high levels of sequence conservation, suggesting their potential functions. There is thus a need to develop a method for predicting functional microexons.
View Article and Find Full Text PDFSingle-cell RNA sequencing reveals gene expression differences between individual cells and also identifies different cell populations that are present in the bulk starting material. To obtain an accurate assessment of patient samples, single-cell suspensions need to be generated as soon as possible once the tissue or sample has been collected. However, this requirement poses logistical challenges for experimental designs involving multiple samples from the same subject since these samples would ideally be processed at the same time to minimize technical variation in data analysis.
View Article and Find Full Text PDFChromatin accessibility is central to basal and inducible gene expression. Through ATAC-seq experiments in estrogen receptor-positive (ER+) breast cancer cell line MCF-7 and integration with multi-omics data, we found estradiol (E2) induced chromatin accessibility changes in a small number of breast cancer-relevant E2-regulated genes. As expected, open chromatin regions associated with E2-inducible gene expression showed enrichment of estrogen response element (ERE) and those associated with E2-repressible gene expression were enriched for ERE, PBX1, and PBX3.
View Article and Find Full Text PDFBackground: Ion Torrent and Ion Proton are semiconductor-based sequencing technologies that feature rapid sequencing speed and low upfront and operating costs, thanks to the avoidance of modified nucleotides and optical measurements. Despite of these advantages, however, Ion semiconductor sequencing technologies suffer much reduced sequencing accuracy at the genomic loci with homopolymer repeats of the same nucleotide. Such limitation significantly reduces its efficiency for the biological applications aiming at accurately identifying various genetic variants.
View Article and Find Full Text PDF