Publications by authors named "Duo-Yao Cao"

Methionine adenosyltransferase 2 A (MAT2A) and MAT2B are essential for hepatic stellate cells (HSCs) activation. Forkhead box M1 (FOXM1) transgenic mice develop liver inflammation and fibrosis. Here we examine if they crosstalk in male mice.

View Article and Find Full Text PDF

subsp. C60 is a probiotic strain of lactic acid bacteria (LAB) which induces various immune modifications in myeloid lineage cells. These modifications subsequently regulate T cell function, resulting in enhanced immunity both locally and systemically.

View Article and Find Full Text PDF

Programmed death ligand 1 (PD-L1) is a co-inhibitory molecule expressed on the surface of various cell types and known for its suppressive effect on T cells through its interaction with PD-1. Neutrophils also express PD-L1, and its expression is elevated in specific situations; however, the immunobiological role of PD-L1 neutrophils has not been fully characterized. Here, we report that PD-L1-expressing neutrophils increased in methicillin-resistant (MRSA) infection are highly functional in bacterial elimination and supporting inflammatory resolution.

View Article and Find Full Text PDF

Atherosclerosis poses a significant threat to human health, impacting overall well-being and imposing substantial financial burdens. Current treatment strategies mainly focus on managing low-density lipids (LDL) and optimizing liver functions. However, it's crucial to recognize that Atherosclerosis involves more than just lipid accumulation; it entails a complex interplay of immune responses.

View Article and Find Full Text PDF

As part of the classical renin-angiotensin system, the peptidase angiotensin-converting enzyme (ACE) makes angiotensin II which has myriad effects on systemic cardiovascular function, inflammation, and cellular proliferation. Less well known is that macrophages and neutrophils make ACE in response to immune activation which has marked effects on myeloid cell function independent of angiotensin II. Here, we discuss both classical (angiotensin) and nonclassical functions of ACE and highlight mice called ACE 10/10 in which genetic manipulation increases ACE expression by macrophages and makes these mice much more resistant to models of tumors, infection, atherosclerosis, and Alzheimer's disease.

View Article and Find Full Text PDF

An upregulation of angiotensin-converting enzyme (ACE) expression strengthens the immune activity of myeloid lineage cells as a natural functional regulation mechanism in our immunity. ACE10/10 mice, possessing increased ACE expression in macrophages, exhibit enhanced anti-tumor immunity and anti-bactericidal effects compared to those of wild type (WT) mice, while the detailed molecular mechanism has not been elucidated yet. In this report, we demonstrate that peroxisome proliferator-activated receptor alpha (PPARα) is a key molecule in the functional upregulation of macrophages induced by ACE.

View Article and Find Full Text PDF

Lactic acid bacteria (LAB) possess the ability to argument T cell activity through functional modification of antigen presenting cells (APCs), such as dendritic cells (DCs) and macrophages. Nevertheless, the precise mechanism underlying LAB-induced enhancement of antigen presentation in APCs remains incompletely understood. To address this question, we investigated the detailed mechanism underlying the enhancement of major histocompatibility complex (MHC) class I-restricted antigen presentation in DCs using a probiotic strain known as subsp.

View Article and Find Full Text PDF

Background & Aims: The liver is a common site of cancer metastasis, most commonly from colorectal cancer, and primary liver cancers that have metastasized are associated with poor outcomes. The underlying mechanisms by which the liver defends against these processes are largely unknown. Prohibitin 1 (PHB1) and methionine adenosyltransferase 1A (MAT1A) are highly expressed in the liver.

View Article and Find Full Text PDF

Testis angiotensin-converting enzyme (tACE) plays a critical role in male fertility, but the mechanism is unknown. By using ACE C-domain KO (CKO) mice which lack tACE activity, we found that ATP in CKO sperm was 9.4-fold lower than WT sperm.

View Article and Find Full Text PDF

The pathogenesis of atherosclerosis is defined by impaired lipid handling by macrophages which increases intracellular lipid accumulation. This dysregulation of macrophages triggers the accumulation of apoptotic cells and chronic inflammation which contributes to disease progression. We previously reported that mice with increased macrophage-specific angiotensin-converting enzyme, termed ACE10/10 mice, resist atherosclerosis in an adeno-associated virus-proprotein convertase subtilisin/kexin type 9 (AAV-PCSK9)-induced model.

View Article and Find Full Text PDF

Aims: The metabolic failure of macrophages to adequately process lipid is central to the aetiology of atherosclerosis. Here, we examine the role of macrophage angiotensin-converting enzyme (ACE) in a mouse model of PCSK9-induced atherosclerosis.

Methods And Results: Atherosclerosis in mice was induced with AAV-PCSK9 and a high-fat diet.

View Article and Find Full Text PDF

Head and neck squamous cell carcinoma (HNSCC) is a highly aggressive disease with poor prognosis, which is mainly due to drug resistance. The biology determining the response to chemo-radiotherapy in HNSCC is poorly understood. Using clinical samples, we found that miR124-3p and miR766-3p are overexpressed in chemo-radiotherapy-resistant (non-responder) HNSCC, as compared to responder tumors.

View Article and Find Full Text PDF

Creatine is an organic compound which is utilized in biological activities, especially for adenosine triphosphate (ATP) production in the phosphocreatine system. This is a well-known biochemical reaction that is generally recognized as being mainly driven in specific parts of the body, such as the skeletal muscle and brain. However, our report shows a novel aspect of creatine utilization and ATP synthesis in innate immune cells.

View Article and Find Full Text PDF

While angiotensin-converting enzyme (ACE) regulates blood pressure by producing angiotensin II as part of the renin-angiotensin system, we recently reported that elevated ACE in neutrophils promotes an effective immune response and increases resistance to infection. Here, we investigate if such neutrophils protect against renal injury in immune complex (IC)-mediated crescentic glomerulonephritis (GN) through complement. Nephrotoxic serum nephritis (NTN) was induced in wild-type and NeuACE mice that overexpress ACE in neutrophils.

View Article and Find Full Text PDF

Background: Chronic renal inflammation has been widely recognized as a major promoter of several forms of high blood pressure including salt-sensitive hypertension. In diabetes, IL (interleukin)-6 induces salt sensitivity through a dysregulation of the epithelial sodium channel. However, the origin of this inflammatory process and the molecular events that culminates with an abnormal regulation of epithelial sodium channel and salt sensitivity in diabetes are largely unknown.

View Article and Find Full Text PDF

Angiotensin converting enzyme (ACE) is well known for its role producing the vasoconstrictor angiotensin II and ACE inhibitors are commonly used for treating hypertension and cardiovascular disease. However, ACE has many different substrates besides angiotensin I and plays a role in many different physiologic processes. Here, we discuss the role of ACE in the immune response.

View Article and Find Full Text PDF

As first responder cells in host defense, neutrophils must be carefully regulated to prevent collateral tissue injury. However, the intracellular events that titrate the neutrophil's response to inflammatory stimuli remain poorly understood. As a molecular switch, Ras activity is tightly regulated by Ras GTPase activating proteins (RasGAP) to maintain cellular active-inactive states.

View Article and Find Full Text PDF

Angiotensin-converting enzyme inhibitors (ACEIs) are used by millions of patients to treat hypertension, diabetic kidney disease, and heart failure. However, these patients are often at increased risk of infection. To evaluate the impact of ACEIs on immune responses to infection, we compared the effect of an ACEI versus an angiotensin receptor blocker (ARB) on neutrophil antibacterial activity.

View Article and Find Full Text PDF

The observation that all components of the renin angiotensin system (RAS) are expressed in the kidney and the fact that intratubular angiotensin (Ang) II levels greatly exceed the plasma concentration suggest that the synthesis of renal Ang II occurs independently of the circulating RAS. One of the main components of this so-called intrarenal RAS is angiotensin-converting enzyme (ACE). Although the role of ACE in renal disease is demonstrated by the therapeutic effectiveness of ACE inhibitors in treating several conditions, the exact contribution of intrarenal versus systemic ACE in renal disease remains unknown.

View Article and Find Full Text PDF

Background: Hypertension is considered a major risk factor for the progression of diabetic kidney disease. Type 2 diabetes is associated with increased renal sodium reabsorption and salt-sensitive hypertension. Clinical studies show that men have higher risk than premenopausal women for the development of diabetic kidney disease.

View Article and Find Full Text PDF

Granulocytes are key players in cancer metastasis. While tumor-induced expansion of immunosuppressive myeloid-derived suppressor cells (MDSCs) is well-described, the fate and contribution of terminally differentiated mature neutrophils to the metastatic process remain poorly understood. Here, we show that in experimental metastatic cancer models, CXCR4CD62L aged neutrophils accumulate via disruption of neutrophil circadian homeostasis and direct stimulation of neutrophil aging mediated by angiotensin II.

View Article and Find Full Text PDF

Toll-like receptor (TLR) signaling is an indispensable factor in immune cells activation. Many TLR ligands have been identified, and were characterized the immunological functions such as inflammatory cytokine production in immune cells. However, the anti-inflammatory response in TLR ligand-mediated manner is poorly understood.

View Article and Find Full Text PDF

Angiotensin-converting enzyme (ACE), a dicarboxypeptidase, plays a major role in the regulation of blood pressure by cleaving angiotensin I into angiotensin II (Ang II), a potent vasoconstrictor. Because of its wide substrate specificity and tissue distribution, ACE affects many diverse biological processes. In inflammatory diseases, including granuloma, atherosclerosis, chronic kidney disease and bacterial infection, ACE expression gets upregulated in immune cells, especially in myeloid cells.

View Article and Find Full Text PDF