Herein, pyrenecarboxaldehyde@graphene oxide (Pyc@GO) sheets with highly efficient electrochemiluminescence (ECL) as emitters were prepared by a noncovalent combination to develop a neoteric ECL biosensing platform for the ultrasensitive assessment of human apurinic/apyrimidinic endonuclease1 (APE1) activity. Impressively, the pyrenecarboxaldehyde (Pyc) molecules were able to form stable polar functional groups on the surface of GO sheets through the noncovalent π-π stacking mechanism to prevent intermolecular restacking and simultaneously generate Pyc@GO sheets. Compared with the tightly packed PAH nanocrystals, the Pyc@GO sheets significantly reduced internal filtering effects and diminished nonactivated emitters to enhance ECL intensity and achieve strong ECL emission.
View Article and Find Full Text PDFHerein, Ag@pyrenecarboxaldehyde nanocapsules (Ag@Pyc nanocapsules) as emitters were prepared to construct an ultrasensitive electrochemiluminescence (ECL) biosensor for the detection of the human apurinic/apyrimidinic endonuclease1 (APE1) activity. Ag nanoparticles on the surface of Pyc nanocapsules as coreaction accelerators could significantly promote coreactant peroxydisulfate (SO) to generate massive reactive intermediates of sulfate radical anion (SO), which interacted with the Pyc nanocapsules to achieve a strong ECL response. In addition, with the aid of APE1-triggered 3D DNA machine, trace target could be converted into a large number of mimic targets (MTs), which were positively correlated with the activity of APE1.
View Article and Find Full Text PDF