Guanine-rich sequences can, under appropriate conditions, adopt a distinctive, four-stranded, helical fold known as a G-quadruplex. Interest in quadruplex folds has grown in recent years as evidence of their biological relevance has accumulated from both sequence analysis and function-specific assays. The folds are unusually stable and their formation appears to require close management to maintain cell health; regulatory failure correlates with genomic instability and a number of cancer phenotypes.
View Article and Find Full Text PDFDNA repair is fundamental to genome stability and is found in all three domains of life. However many archaeal species, such as Methanopyrus kandleri, contain only a subset of the eukaryotic nucleotide excision repair (NER) homologs, and those present often contain significant differences compared to their eukaryotic homologs. To clarify the role of the NER XPG-like protein Mk0566 from M.
View Article and Find Full Text PDFThe crystal structure of an archaeal-type phosphoenolpyruvate carboxylase from Clostridium perfringens has been determined based on X-ray data extending to 3 Å. The asymmetric unit of the structure includes two tetramers (each a dimer-of-dimers) of the enzyme. The precipitant, malonate, employed for the crystallization is itself a weak inhibitor of phosphoenolpyruvate carboxylase and a malonate molecule is seen in the active-site in the crystal structure.
View Article and Find Full Text PDFSgrAI is a type II restriction endonuclease that cuts an unusually long recognition sequence and exhibits allosteric self-activation with expansion of DNA-sequence specificity. The three-dimensional crystal structures of SgrAI bound to cleaved primary-site DNA and Mg²(+) and bound to secondary-site DNA with either Mg²(+) or Ca²(+) are presented. All three structures show a conformation of enzyme and DNA similar to the previously determined dimeric structure of SgrAI bound to uncleaved primary-site DNA and Ca²(+) [Dunten et al.
View Article and Find Full Text PDFSgrAI is a type IIF restriction endonuclease that cuts an unusually long recognition sequence and exhibits allosteric self-modulation of cleavage activity and sequence specificity. Previous studies have shown that DNA bound dimers of SgrAI oligomerize into an activated form with higher DNA cleavage rates, although previously determined crystal structures of SgrAI bound to DNA show only the DNA bound dimer. A new crystal structure of the type II restriction endonuclease SgrAI bound to DNA and Ca(2+) is now presented, which shows the close association of two DNA bound SgrAI dimers.
View Article and Find Full Text PDFFor the past five years, the Structural Molecular Biology group at the Stanford Synchrotron Radiation Lightsource (SSRL) has provided general users of the facility with fully remote access to the macromolecular crystallography beamlines. This was made possible by implementing fully automated beamlines with a flexible control system and an intuitive user interface, and by the development of the robust and efficient Stanford automated mounting robotic sample-changing system. The ability to control a synchrotron beamline remotely from the comfort of the home laboratory has set a new paradigm for the collection of high-quality X-ray diffraction data and has fostered new collaborative research, whereby a number of remote users from different institutions can be connected at the same time to the SSRL beamlines.
View Article and Find Full Text PDFAn analysis of the binding motifs of known HIV-1 non-nucleoside reverse transcriptase inhibitors has led to discovery of novel piperidine-linked aminopyrimidine derivatives with broad activity against wild-type as well as drug-resistant mutant viruses. Notably, the series retains potency against the K103N/Y181C and Y188L mutants, among others. Thus, the N-benzyl compound 5k has a particularly attractive profile.
View Article and Find Full Text PDFHeme is a vital molecule for all life forms with heme being capable of assisting in catalysis, binding ligands, and undergoing redox changes. Heme-related dysfunction can lead to cardiovascular diseases with the oxidation of the heme of soluble guanylyl cyclase (sGC) critically implicated in some of these cardiovascular diseases. sGC, the main nitric oxide (NO) receptor, stimulates second messenger cGMP production, whereas reactive oxygen species are known to scavenge NO and oxidize/inactivate the heme leading to sGC degradation.
View Article and Find Full Text PDFHere we report on the discovery of a series of maleimides which have high potency and good selectivity for GSK-3beta. The incorporation of polar groups afforded compounds with good bioavailability. The most potent compound 34 has an IC(50) of 0.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
November 2009
An archaeal-type phosphoenolpyruvate carboxylase (PepcA) from Clostridium perfringens has been expressed in Escherichia coli in a soluble form with an amino-terminal His tag. The recombinant protein is enzymatically active and two crystal forms have been obtained. Complete diffraction data extending to 3.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
April 2009
Uninterpretable electron-density maps were obtained using either MIRAS phases or MR phases in attempts to determine the structure of the type II restriction endonuclease SgrAI bound to DNA. While neither solution strategy was particularly promising (map correlation coefficients of 0.29 and 0.
View Article and Find Full Text PDFTyr235 of GTP-dependent phosphoenolpyruvate (PEP) carboxykinase is a fully invariant residue. The aromatic ring of this residue establishes an energetically favorable weak anion-quadrupole interaction with PEP carboxylate. The role of Tyr235 in catalysis was investigated via kinetic analysis of site-directed mutagenesis-derived variants.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
December 2008
Nucleic Acids Res
September 2008
The three-dimensional X-ray crystal structure of the 'rare cutting' type II restriction endonuclease SgrAI bound to cognate DNA is presented. SgrAI forms a dimer bound to one duplex of DNA. Two Ca(2+) bind in the enzyme active site, with one ion at the interface between the protein and DNA, and the second bound distal from the DNA.
View Article and Find Full Text PDFA series of benzyl pyridazinones were evaluated as HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs). Several members of this series showed good activity against the wild-type virus and NNRTI-resistant viruses. The binding of inhibitor 5a to HIV-RT was analyzed by surface plasmon resonance spectroscopy.
View Article and Find Full Text PDFNew modifications on the C-8 4-aminobenzyl unit of the previously reported 3-alkyl-1,8-dibenzylxanthine inhibitors of cPEPCK are presented. The most active compound reported here is the 5-chloro-1,3-dimethyl-1H-pyrazole-4-sulfonic acid amide derivative 2 with an IC(50) of 0.29+/-0.
View Article and Find Full Text PDFPhenol hydroxylase (PH) belongs to a family of bacterial multicomponent monooxygenases (BMMs) with carboxylate-bridged diiron active sites. Included are toluene/o-xylene (ToMO) and soluble methane (sMMO) monooxygenase. PH hydroxylates aromatic compounds, but unlike sMMO, it cannot oxidize alkanes despite having a similar dinuclear iron active site.
View Article and Find Full Text PDFGlucokinase (GCK) serves as the pancreatic glucose sensor. Heterozygous inactivating GCK mutations cause hyperglycemia, whereas activating mutations cause hypoglycemia. We studied the GCK V62M mutation identified in two families and co-segregating with hyperglycemia to understand how this mutation resulted in reduced function.
View Article and Find Full Text PDFA novel series of oxindole-type inhibitors of CDK2 that have heteroatom substituted alkynyl moieties at their C-4 position is described. These novel 4-alkynyl-substituted inhibitors have superior potency relative to their parent compound in free enzyme and in cell based assays. The crystal structure of CDK2 in complex with one of these analogues was determined and gives insight to their increased potency.
View Article and Find Full Text PDFInhibition of the biosynthesis of proinflammatory cytokines such as tumor necrosis factor and interleukin-1 via p38 has been an approach toward the development of a disease modifying agent for the treatment of chronic inflammation and autoimmune diseases. The development of a new core structure of p38 inhibitors, 3-(4-fluorophenyl)-2-(pyridin-4-yl)-1H-pyrrolo[3,2-b] pyridine, is described. X-ray crystallographic data of the lead bound to the active site of p38 was used to guide the optimization of the series.
View Article and Find Full Text PDFThe analysis of the X-ray structures of two xanthine inhibitors bound to PEPCK and a comparison to the X-ray structure of GTP bound to PEPCK are reported. The SAR at N-1, N-7 and developing SAR at C-8 are consistent with information gained from the X-ray structures of compounds 1 and 2 bound to PEPCK. Representative N-3 modifications of compound 2 that led to the discovery of 3-cyclopropylmethyl and its carboxy analogue as optimal N-3 groups are presented.
View Article and Find Full Text PDFWe report crystal structures of the human enzyme phosphoenolpyruvate carboxykinase (PEPCK) with and without bound substrates. These structures are the first to be determined for a GTP-dependent PEPCK, and provide the first view of a novel GTP-binding site unique to the GTP-dependent PEPCK family. Three phenylalanine residues form the walls of the guanine-binding pocket on the enzyme's surface and, most surprisingly, one of the phenylalanine side-chains contributes to the enzyme's specificity for GTP.
View Article and Find Full Text PDFBioorg Med Chem Lett
April 2001
The 5,5-disubstitutedpyrimidine-2,4,6-triones represent a new class of MMP inhibitors showing selectivity for the gelatinases A and B, collagenase-3, and human neutrophil collagenase. The SAR presented here is in good agreement with an X-ray structure of compound 5 bound to the catalytic domain of stromelysin-1. While of the barbiturate structural class, compound 5 did not show any toxic or sedative effects.
View Article and Find Full Text PDFA new class of matrix metalloproteinase (MMP) inhibitors has been identified by screening a collection of compounds against stromelysin. The inhibitors, 2,4,6-pyrimidine triones, have proven to be potent inhibitors of gelatinases A and B. An X-ray crystal structure of one representative compound bound to the catalytic domain of stromelysin shows that the compounds bind at the active site and ligand the active-site zinc.
View Article and Find Full Text PDF