Skin cancer, particularly melanoma, poses significant challenges due to the heterogeneity of skin images and the demand for accurate and interpretable diagnostic systems. Early detection and effective management are crucial for improving patient outcomes. Traditional AI models often struggle with balancing accuracy and interpretability, which are critical for clinical adoption.
View Article and Find Full Text PDFBackground: Mammography for the diagnosis of early breast cancer (BC) relies heavily on the identification of breast masses. However, in the early stages, it might be challenging to ascertain whether a breast mass is benign or malignant. Consequently, many deep learning (DL)-based computer-aided diagnosis (CAD) approaches for BC classification have been developed.
View Article and Find Full Text PDFThe prevalence of depression has increased dramatically over the last several decades: it is frequently overlooked and can have a significant impact on both physical and mental health. Therefore, it is crucial to develop an automated detection system that can instantly identify whether a person is depressed. Currently, machine learning (ML) and artificial neural networks (ANNs) are among the most promising approaches for developing automated computer-based systems to predict several mental health issues, such as depression.
View Article and Find Full Text PDFCauliflower cultivation plays a pivotal role in the Indian Subcontinent's winter cropping landscape, contributing significantly to both agricultural output, economy and public health. However, the susceptibility of cauliflower crops to various diseases poses a threat to productivity and quality. This paper presents a novel machine vision approach employing a modified YOLOv8 model called Cauli-Det for automatic classification and localization of cauliflower diseases.
View Article and Find Full Text PDFBackground: Hair and scalp disorders present a significant challenge in dermatology due to their clinical diversity and overlapping symptoms, often leading to misdiagnoses. Traditional diagnostic methods rely heavily on clinical expertise and are limited by subjectivity and accessibility, necessitating more advanced and accessible diagnostic tools. Artificial intelligence (AI) and deep learning offer a promising solution for more accurate and efficient diagnosis.
View Article and Find Full Text PDFLeaf diseases are a global threat to crop production and food preservation. Detecting these diseases is crucial for effective management. We introduce LeafDoc-Net, a robust, lightweight transfer-learning architecture for accurately detecting leaf diseases across multiple plant species, even with limited image data.
View Article and Find Full Text PDFAccurate prediction of heart failure can help prevent life-threatening situations. Several factors contribute to the risk of heart failure, including underlying heart diseases such as coronary artery disease or heart attack, diabetes, hypertension, obesity, certain medications, and lifestyle habits such as smoking and excessive alcohol intake. Machine learning approaches to predict and detect heart disease hold significant potential for clinical utility but face several challenges in their development and implementation.
View Article and Find Full Text PDFWith an aging population and increased chronic diseases, remote health monitoring has become critical to improving patient care and reducing healthcare costs. The Internet of Things (IoT) has recently drawn much interest as a potential remote health monitoring remedy. IoT-based systems can gather and analyze a wide range of physiological data, including blood oxygen levels, heart rates, body temperatures, and ECG signals, and then provide real-time feedback to medical professionals so they may take appropriate action.
View Article and Find Full Text PDF