Publications by authors named "Dunon D"

CD105 is an auxiliary receptor for the transforming growth factor beta superfamily, highly expressed on proliferating endothelial cells and adult hematopoietic stem cells. Because CD105 mRNA expression was reported in the developing aortic region, we further characterized its expression profile in the aorta and examined the hematopoietic potential of CD105(+) cells. Aortic endothelial cells, intra-aortic hematopoietic cell clusters and the purified cell fraction enriched in progenitor/hematopoietic stem cell activity expressed CD105.

View Article and Find Full Text PDF

In humans and mice, the early development of αβ T cells is controlled by the pre-T-cell receptor α chain (pTα) that is covalently associated with the T-cell receptor β (TCRβ) chain to form the pre-T-cell receptor (pre-TCR) at the thymocyte surface. Pre-TCR functions in a ligand-independent manner through self-oligomerization mediated by pTα. Using in silico and gene synteny-based approaches, we identified the pTα gene (PTCRA) in four sauropsid (three birds and one reptile) genomes.

View Article and Find Full Text PDF

The melanoma cell adhesion molecule (MCAM)/CD146 is expressed as two isoforms differing by their cytoplasmic domain (MCAM long (MCAM-l) and MCAM short (MCAM-s)). MCAM being expressed by endothelial cells and activated T cells, we analyzed its involvement in lymphocyte trafficking. The NK cell line NKL1 was transfected by MCAM isoforms and submitted to adhesion on both the endothelial cell monolayer and recombinant molecules under shear stress.

View Article and Find Full Text PDF

Melanoma cell adhesion molecule (MCAM), an adhesion molecule belonging to the Ig superfamily, is an endothelial marker and is expressed in different epithelia. MCAM is expressed as two isoforms differing by their cytoplasmic domain: MCAM-l and MCAM-s (long and short). In order to identify the respective role of each MCAM isoform, we analyzed MCAM isoform targeting in polarized epithelial Madin-Darby canine kidney (MDCK) cells using MCAM-GFP chimeras.

View Article and Find Full Text PDF

We have isolated the avian ortholog for CBFbeta, the common non-DNA binding subunit of the core binding factor (CBF) that has important regulatory roles in major developmental pathways. CBFbeta forms heterodimers with the DNA-binding Runx proteins and increases their affinity for DNA and their protein stability. Here, we describe the Cbfbeta expression pattern during the first 4 days of chick embryo development, with a special interest in the developing hematopoietic system.

View Article and Find Full Text PDF

To date three sites of emergence of hemopoietin cells have been identified during early avian development: the yolk sac, the intraaortic clusters and recently the allantois. However, the contributions of the hematopoietic stem cell (HSC) populations generated by these different sites to definitive hematopoiesis and their migration routes are not fully unraveled. Experimental embryology as well as the establishment of the genetic cascades involved in HSC emergence help now to draw a better scheme of these processes.

View Article and Find Full Text PDF

Notch signalling is an important evolutionary conserved mechanism known to control cell fate choices through local interactions. Here, the patterns of expression of Notch-1 and -2 genes and their ligands Delta-1, Serrate-1 and -2, were established in the early blastodisc of the chicken embryo from the pre-streak to the first somite stages. Delta-1 was detected as early as the pre-streak stage in the posterior part of the embryo shortly followed in the same region by Notch-1 at the initial streak stage.

View Article and Find Full Text PDF

We describe the expression pattern of cMCAM, a cell adhesion molecule of the immunoglobulin superfamily, in early chick embryonic development by in situ hybridisation. An initial ectodermal domain of expression is subsequently expanded, and cMCAM is expressed in the neural crest cells, otic vesicle, heart primordium, notochord and endoderm. In addition, cMCAM expression localises in the myotome once the somite cells have been specified.

View Article and Find Full Text PDF

The RR5 monoclonal antibody (mAb) was obtained after immunization of mice with hemopoietic cells from chicken embryos. The cDNA encoding the protein recognized by RR5 was cloned using COS-7 cells transfected with an embryonic bone marrow (BM) cDNA library. The epitope recognized by the RR5 mAb was located on the non-polymorphic MHC class II beta-chain molecule.

View Article and Find Full Text PDF

HEMCAM/gicerin, an immunoglobulin superfamily protein, is involved in homophilic and heterophilic adhesion. It interacts with NOF (neurite outgrowth factor), a molecule of the laminin family. Alternative splicing leads to mRNAs coding for HEMCAM with a short (HEMCAM-s) or a long cytoplasmic tail (HEMCAM-l).

View Article and Find Full Text PDF

The immune system consists of a complex collection of leukocytes and dendritic cells that surveys most tissues in the body for the appearance of foreign antigens. For an efficient immune response, the interaction and co-localization of antigen-presenting cells, costimulatory helper cells and effector cells are crucial parameters. Therefore, the migration routes of antigen-presenting cells and potential antigen-specific lymphocytes merge in secondary lymphoid organs in order to increase the likelihood and speed of a lymphocyte finding its cognate antigen.

View Article and Find Full Text PDF

Intraepithelial lymphocytes (IEL) of the small intestine are anatomically positioned to be in the first line of cellular defense against enteric pathogens. Therefore, determining the origin of these cells has important implications for the mechanisms of T cell maturation and repertoire selection. Recent evidence suggests that murine CD8 alpha alpha intestinal IELs (iIELs) can mature and undergo selection in the absence of a thymus.

View Article and Find Full Text PDF

T-cell progenitors in the embryonic bone marrow express the tyrosine kinase receptor c-kit. RR5, an anti-MHC class II beta chain monoclonal antibody, subdivides this c-kit positive population. Intrathymic transfer experiments showed that most of the T-cell progenitors belong to the MHC class II(+)/c-kit(+) bone marrow population in the embryo and young adult.

View Article and Find Full Text PDF

The role of the thymus is to ensure the differentiation and selection of T lymphocytes, which are one of the major players in the immune system. Recent studies show that the establishment of the T lymphoid system requires a complex cell traffic. In this field, avian embryos yield particularly informative developmental models because they are amenable to many experimental approaches during the phases of morphogenesis, and, in addition, the immune system resembles that of mammals.

View Article and Find Full Text PDF

The thymus is colonized by circulating progenitor cells that differentiate into mature T cells under the influence of the thymic microenvironment. We report here the cloning and function of the avian thymocyte Ag ChT1, a member of the Ig superfamily with one V-like and one C2-like domain. ChT1-positive embryonic bone marrow cells coexpressing c-kit give rise to mature T cells upon intrathymic cell transfer.

View Article and Find Full Text PDF

An in vivo thymus reconstitution assay based on intrathymic injection of hematopoietic progenitors into irradiated chicks was used to determine the number of T-cell progenitors in peripheral blood, paraaortic foci, bone marrow (BM), and spleen during ontogeny. This study allowed us to analyze the regulation of thymus colonization occurring in three waves during embryogenesis. It confirmed that progenitors of the first wave of thymus colonization originate from the paraaortic foci, whereas progenitors of the second and the third waves originate from the BM.

View Article and Find Full Text PDF

The avian thymus is colonized by three waves of hemopoietic progenitors during embryogenesis. An in vivo thymus reconstitution assay based on intrathymic injection of irradiated chicks showed that cells of para-aortic foci were able to differentiate into T lymphocytes, confirming their putative role in the first wave of thymus colonization. This assay was also used to detect and to characterize T cell progenitors from the bone marrow which are involved in the second and third wave of thymus colonization.

View Article and Find Full Text PDF

Inflammation represents the consequence of capillary dilation with accumulation of fluid (edema) and the immigration of leukocytes. By the end of the last century, Metchnikoff noted the power of certain blood cells to move toward bacteria and foreign substances and ingest them. In fact, leukocytes adhere to the vascular endothelium, and subsequently leave the circulation by transendothelial migration driven by chemoattractants, a process known as diapedesis.

View Article and Find Full Text PDF

The embryonic thymus is colonized by the influx of hemopoietic progenitors in waves. To characterize the T cell progeny of the initial colonization waves, we used intravenous adoptive transfer of bone marrow progenitors into congenic embryos. The experiments were performed in birds because intravenous cell infusions can be performed more efficiently in avian than in mammalian embryos.

View Article and Find Full Text PDF

In birds and mammals T cells develop along two discrete pathways characterized by expression of either the alpha beta or the gamma delta T-cell antigen receptors (TCRs). To gain further insight into the evolutionary significance of the gamma delta T-cell lineage, the present studies sought to define the chicken TCR gamma locus. A splenic cDNA library was screened with two polymerase chain reaction products obtained from genomic DNA using primers for highly conserved regions of TCR and immunoglobulin genes.

View Article and Find Full Text PDF

We have characterized the adhesion molecule HEMCAM, which is expressed by hemopoietic progenitors of embryonic bone marrow. HEMCAM belongs to the immunoglobulin superfamily and consists of the V-V-C2-C2-C2 Ig domains. There are three mRNA splice variants.

View Article and Find Full Text PDF

The immune system is formed by leukocytes. They are passively transported through the body by the vascular system, but their entrance into tissues requires a coordinated series of events, namely activation of leukocyte integrins, adhesion to the vascular endothelium, and migration. There are four steps in this process, which begin with the rolling of leukocytes along the vascular endothelium, followed by signaling which activates leukocyte integrins, thus leading to tight adhesion to the endothelium and finally transmigration.

View Article and Find Full Text PDF