Publications by authors named "Dunkley P"

Article Synopsis
  • Inflammation linked to neuropathology was studied by injecting rats with lipopolysaccharide (LPS) to observe long-term effects on tyrosine hydroxylase (TH) regulation in the midbrain.
  • Cytokine levels were measured over six months, revealing significant increases in the substantia nigra (SN) immediately post-injection and notable long-term changes, while the ventral tegmental area (VTA) exhibited different patterns with no significant changes after the first week.
  • TH activity showed increases in the SN over time, with surprising activation changes that did not correlate with expected phosphorylation patterns, indicating distinct inflammatory responses in the SN compared to the VTA.
View Article and Find Full Text PDF

Tyrosine hydroxylase (TH) is the key enzyme that controls the rate of synthesis of the catecholamines. SH-SY5Y cells with stable transfections of either human tyrosine hydroxylase isoform 1 (hTH1) or human tyrosine hydroxylase isoform 4 (hTH4) were used to determined the subcellular distribution of TH protein and phosphorylated TH, under basal conditions and after muscarine stimulation. Muscarine was previously shown to increase the phosphorylation of only serine 19 and serine 40 in hTH1 cells.

View Article and Find Full Text PDF

Tyrosine hydroxylase is the key enzyme controlling the synthesis of the catecholamines including dopamine. The breakdown of dopamine into toxic compounds has been suggested to have a key role in the degeneration of the dopaminergic neurons in Parkinson's disease. Humans are unique in containing four isoforms of tyrosine hydroxylase, but understanding of the role of these isoforms under normal conditions and in disease states is limited.

View Article and Find Full Text PDF

Tyrosine hydroxylase (TH) is the rate-limiting enzyme in the synthesis of the catecholamines dopamine, noradrenaline and adrenaline. One of the major mechanisms for controlling the activity of TH is protein phosphorylation. TH is phosphorylated at serine residues 8, 19, 31 and 40.

View Article and Find Full Text PDF

Systemic inflammation induces transient or permanent dysfunction in the brain by exposing it to soluble inflammatory mediators. The receptor for advanced glycation endproducts (RAGE) binds to distinct ligands mediating and increasing inflammatory processes. In this study we used an LPS-induced systemic inflammation model in rats to investigate the effect of blocking RAGE in serum, liver, cerebrospinal fluid (CSF) and brain (striatum, prefrontal cortex, ventral tegmental area and substantia nigra).

View Article and Find Full Text PDF

Neonatal immune challenge with the bacterial mimetic lipopolysaccharide has the capacity to generate long-term changes in the brain. Neonatal rats were intraperitoneally injected with lipopolysaccharide (0.05 mg/kg) on postnatal day (PND) 3 and again on PND 5.

View Article and Find Full Text PDF

Immune activation can alter the activity of adrenal chromaffin cells. The effect of immune activation by lipopolysaccharide (LPS) on the regulation of tyrosine hydroxylase (TH) in the adrenal medulla in vivo was determined between 1 day and 6 months after LPS injection. The plasma levels of eleven cytokines were reduced 1 day after LPS injection, whereas the level for interleukin-10 was increased.

View Article and Find Full Text PDF

Retinoic acid (RA) morphogenetic properties have been used in different kinds of therapies, from neurodegenerative disorders to some types of cancer such as promyelocytic leukemia and neuroblastoma. However, most of the pathways responsible for RA effects remain unknown. To investigate such pathways, we used a RA-induced differentiation model in the human neuroblastoma cells, SH-SY5Y.

View Article and Find Full Text PDF

Human neuroblastoma SH-SY5Y cells have been used as an in vitro model for neurodegenerative disorders such as Parkinson's disease and can be induced to a mature neuronal phenotype through retinoic acid (RA) differentiation. However, mechanisms of RA-induced differentiation remain unclear. Here, we investigate the role of reactive species (RS) on SH-SY5Y neuroblastoma cells under RA differentiation, using the antioxidant Trolox® as co-treatment.

View Article and Find Full Text PDF

Manganese (Mn) is an essential trace element required for a range of physiological processes, but Mn can also be neurotoxic especially during development. Excess levels of Mn accumulate preferentially in the striatum and can induce a syndrome called manganism, characterized by an initial stage of psychiatric disorder followed by motor impairment. In the present study, we investigated the effects of Mn exposure on the developing dopaminergic system, specifically tyrosine hydroxylase (TH) protein and phosphorylation levels in the striatum of rats.

View Article and Find Full Text PDF

Stress activates selected neuronal systems in the brain and this leads to activation of a range of effector systems. Our aim was to investigate some of the relationships between these systems under basal conditions and over a 40-min period in response to footshock stress. Specifically, we investigated catecholaminergic neurons in the locus coeruleus (LC), ventral tegmental area and medial prefrontal cortex (mPFC) in the brain, by measuring tyrosine hydroxylase (TH) protein, TH phosphorylation and TH activation.

View Article and Find Full Text PDF

Müller cells constitute the main glial cell type in the retina where it interacts with virtually all cells displaying relevant functions to retinal physiology. Under appropriate stimuli, Müller cells may undergo dedifferentiation, being able to generate other neural cell types. Here, we show that purified mouse Müller cells in culture express a group of proteins related to the dopaminergic phenotype, including the nuclear receptor-related 1 protein, required for dopaminergic differentiation, as well the enzyme tyrosine hydroxylase.

View Article and Find Full Text PDF

Neonatal exposure of rodents to an immune challenge alters a variety of behavioural and physiological parameters in adulthood. In particular, neonatal lipopolysaccharide (LPS; 0.05 mg/kg, i.

View Article and Find Full Text PDF

Previous studies have shown that early life stress induced by maternal separation or non-handling can lead to behavioural deficits in rats and that these deficits can be alleviated by providing palatable cafeteria high-fat diet (HFD). In these studies we investigated the effects of maternal separation or non-handling and HFD on tyrosine hydroxylase (TH) protein and TH phosphorylation at Ser40 (pSer40TH) and the expression of angiotensin II receptor type 1 (AT1R) protein in the adrenal gland as markers of sympatho-adrenomedullary activation. After littering, Sprague-Dawley rats were assigned to short maternal separation, S15 (15 min), prolonged maternal separation, S180 (180 min) daily from postnatal days 2-14 or were non-handled (NH) until weaning.

View Article and Find Full Text PDF

The expression of c-Fos defines brain regions activated by the stressors hypotension and glucoprivation however, whether this identifies all brain sites involved is unknown. Furthermore, the neurochemicals that delineate these regions, or are utilized in them when responding to these stressors remain undefined. Conscious rats were subjected to hypotension, glucoprivation or vehicle for 30, 60 or 120 min and changes in the phosphorylation of serine residues 19, 31 and 40 in the biosynthetic enzyme, tyrosine hydroxylase (TH), the activity of TH and/or, the expression of c-Fos were determined, in up to ten brain regions simultaneously that contain catecholaminergic cell bodies and/or terminals: A1, A2, caudal C1, rostral C1, A6, A8/9, A10, nucleus accumbens, dorsal striatum and medial prefrontal cortex.

View Article and Find Full Text PDF

Background: Psychological stress, particularly in chronic form, can lead to mood and cognitive dysfunction and is a major risk factor in the development of depressive states. How stress affects the brain to cause psychopathologies is incompletely understood. We sought to characterise potential depression related mechanisms by analysing gene expression and molecular pathways in the infralimbic medial prefrontal cortex (ILmPFC), following a repeated psychological stress paradigm.

View Article and Find Full Text PDF

Tyrosine hydroxylase (TH) is the rate-limiting enzyme in the biosynthetic pathway for catecholamine synthesis. Stress triggers an increase in TH activity, resulting in increased release of catecholamines from both neurons and the adrenal medulla. In response to stress three phases of TH activation have been identified (acute, sustained and chronic) and each phase has a unique mechanism.

View Article and Find Full Text PDF

A 25-year-old woman underwent routine day-case endoscopic mucosal resection (EMR) of two ascending colonic polyps. Six hours later she re-presented with severe abdominal pain. On examination she was tachycardic with tenderness and peritonism in the right lower quadrant.

View Article and Find Full Text PDF

Complex neuroadaptations within key nodes of the brain's "reward circuitry" are thought to underpin long-term vulnerability to relapse. A more comprehensive understanding of the molecular and cellular signaling events that subserve relapse vulnerability may lead to pharmacological treatments that could improve treatment outcomes for psychostimulant-addicted individuals. Recent advances in this regard include findings that drug-induced perturbations to neurotrophin, metabotropic glutamate receptor, and dopamine receptor signaling pathways perpetuate plasticity impairments at excitatory glutamatergic synapses on ventral tegmental area and nucleus accumbens neurons.

View Article and Find Full Text PDF

Tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, is regulated acutely by protein phosphorylation. No studies have systematically investigated the time course of TH phosphorylation in vivo in response to different stressors. We therefore determined the extent of TH phosphorylation at Ser19, Ser31, and Ser40 over a 40-min period in response to footshock or immobilization stress in the rat locus coeruleus and adrenal medulla.

View Article and Find Full Text PDF

Tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, is regulated acutely by protein phosphorylation and chronically by protein synthesis. No studies have systematically investigated the phosphorylation of these sites in vivo in response to stressors. We specifically investigated the phosphorylation of TH occurring within the first 24 h in response to the social defeat stress in the rat adrenal, the locus coeruleus, substantia nigra and ventral tegmental area.

View Article and Find Full Text PDF

In a previous study we demonstrated that human neuroblastoma SH-SY5Y cells transfected with human tyrosine hydroxylase isoform 1 (SH+TH cells) were substantially more resistant to cell death induced by pro-oxidants than wild type SH-SY5Y cells (SH cells). In the present communication we used methylmercury as a model of cell stress in order to test whether SH+TH cells would behave in a similar manner in response to this stressor. Incubation with methylmercury (0.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers investigated how the glucoprivic stimulus, 2-deoxy-d-glucose (2DG), affects tyrosine hydroxylase (TH) regulation in the adrenal medulla, focusing on phosphorylation, synthesis, and signaling pathways in conscious rats.
  • Administering 2DG led to increased plasma adrenaline and glucose levels at 20 and 60 minutes, with activation of protein kinase A (PKA) and cyclin-dependent kinases (CDK) observed shortly after treatment.
  • Phosphorylation of TH was found to peak at different times for various sites, indicating that TH activity is modulated both quickly (short-term) and through increased protein synthesis (long-term) following 2DG administration, thereby
View Article and Find Full Text PDF