The salamander limb correctly regenerates missing limb segments because connective tissue cells have segment-specific identities, termed "positional information". How positional information is molecularly encoded at the chromatin level has been unknown. Here, we performed genome-wide chromatin profiling in mature and regenerating axolotl limb connective tissue cells.
View Article and Find Full Text PDFThe cell type-specific expression of key transcription factors is central to development and disease. Brachyury/T/TBXT is a major transcription factor for gastrulation, tailbud patterning, and notochord formation; however, how its expression is controlled in the mammalian notochord has remained elusive. Here, we identify the complement of notochord-specific enhancers in the mammalian Brachyury/T/TBXT gene.
View Article and Find Full Text PDFThe cell type-specific expression of key transcription factors is central to development. Brachyury/T/TBXT is a major transcription factor for gastrulation, tailbud patterning, and notochord formation; however, how its expression is controlled in the mammalian notochord has remained elusive. Here, we identify the complement of notochord-specific enhancers in the mammalian gene.
View Article and Find Full Text PDFSalamander limb regeneration is an accurate process which gives rise exclusively to the missing structures, irrespective of the amputation level. This suggests that cells in the stump have an awareness of their spatial location, a property termed positional identity. Little is known about how positional identity is encoded, in salamanders or other biological systems.
View Article and Find Full Text PDFBackground: The axolotl is a key model to study appendicular regeneration. The limb complexity resembles that of humans in structure and tissue components; however, axolotl limbs develop postembryonically. In this work, we evaluated the postembryonic development of the appendicular skeleton and its changes with aging.
View Article and Find Full Text PDFCardiovascular lineages develop together with kidney, smooth muscle, and limb connective tissue progenitors from the lateral plate mesoderm (LPM). How the LPM initially emerges and how its downstream fates are molecularly interconnected remain unknown. Here, we isolate a pan-LPM enhancer in the zebrafish-specific draculin (drl) gene that provides specific LPM reporter activity from early gastrulation.
View Article and Find Full Text PDFGenomic manipulation is essential to the use of model organisms to understand development, regeneration and adult physiology. The axolotl (Ambystoma mexicanum), a type of salamander, exhibits an unparalleled regenerative capability in a spectrum of complex tissues and organs, and therefore serves as a powerful animal model for dissecting mechanisms of regeneration. We describe here an optimized stepwise protocol to create genetically modified axolotls using the CRISPR-Cas9 system.
View Article and Find Full Text PDFAmputation of the axolotl forelimb results in the formation of a blastema, a transient tissue where progenitor cells accumulate prior to limb regeneration. However, the molecular understanding of blastema formation had previously been hampered by the inability to identify and isolate blastema precursor cells in the adult tissue. We have used a combination of Cre-loxP reporter lineage tracking and single-cell messenger RNA sequencing (scRNA-seq) to molecularly track mature connective tissue (CT) cell heterogeneity and its transition to a limb blastema state.
View Article and Find Full Text PDFSalamanders serve as important tetrapod models for developmental, regeneration and evolutionary studies. An extensive molecular toolkit makes the Mexican axolotl (Ambystoma mexicanum) a key representative salamander for molecular investigations. Here we report the sequencing and assembly of the 32-gigabase-pair axolotl genome using an approach that combined long-read sequencing, optical mapping and development of a new genome assembler (MARVEL).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2017
Salamanders exhibit extensive regenerative capacities and serve as a unique model in regeneration research. However, due to the lack of targeted gene knockin approaches, it has been difficult to label and manipulate some of the cell populations that are crucial for understanding the mechanisms underlying regeneration. Here we have established highly efficient gene knockin approaches in the axolotl () based on the CRISPR/Cas9 technology.
View Article and Find Full Text PDFA rapid method for temporally and spatially controlled CRISPR-mediated gene knockout in vertebrates will be an important tool to screen for genes involved in complex biological phenomena like regeneration. Here we show that injection of CAS9 protein-guide RNA (gRNA) complexes into the spinal cord lumen of the axolotl and subsequent electroporation leads to comprehensive knockout of gene expression in SOX2 neural stem cells with corresponding functional phenotypes from the gene knockout. This is particularly surprising considering the known prevalence of RNase activity in cerebral spinal fluid, which apparently the CAS9 protein protects against.
View Article and Find Full Text PDFThe salamander is the only tetrapod that regenerates complex body structures throughout life. Deciphering the underlying molecular processes of regeneration is fundamental for regenerative medicine and developmental biology, but the model organism had limited tools for molecular analysis. We describe a comprehensive set of germline transgenic strains in the laboratory-bred salamander Ambystoma mexicanum (axolotl) that open up the cellular and molecular genetic dissection of regeneration.
View Article and Find Full Text PDFUnderstanding how the limb blastema is established after the initial wound healing response is an important aspect of regeneration research. Here we performed parallel expression profile time courses of healing lateral wounds versus amputated limbs in axolotl. This comparison between wound healing and regeneration allowed us to identify amputation-specific genes.
View Article and Find Full Text PDFBackground: A major step during the evolution of tetrapods was their transition from water to land. This process involved the reduction or complete loss of the dermal bones that made up connections to the skull and a concomitant enlargement of the endochondral shoulder girdle. In the mouse the latter is derived from three separate embryonic sources: lateral plate mesoderm, somites, and neural crest.
View Article and Find Full Text PDFDuring salamander limb regeneration, only the structures distal to the amputation plane are regenerated, a property known as the rule of distal transformation. Multiple cell types are involved in limb regeneration; therefore, determining which cell types participate in distal transformation is important for understanding how the proximo-distal outcome of regeneration is achieved. We show that connective tissue-derived blastema cells obey the rule of distal transformation.
View Article and Find Full Text PDFRecent reprogramming studies indicate that mammalian, somatic cells have the potential to achieve pluripotent states and undergo cell type switching. Such cellular traits are observed under natural conditions in animals that regenerate complex organs. A number of invertebrates display the amazing trait of whole body regeneration.
View Article and Find Full Text PDFUrodele amphibians are unique among adult vertebrates in their ability to regenerate missing limbs. The process of limb regeneration requires several key tissues including a regeneration-competent wound epidermis called the regeneration epithelium (RE). We used microarray analysis to profile gene expression of the RE in the axolotl, a Mexican salamander.
View Article and Find Full Text PDFIn contrast to mammals, salamanders and teleost fishes can efficiently repair the adult brain. It has been hypothesised that constitutively active neurogenic niches are a prerequisite for extensive neuronal regeneration capacity. Here, we show that the highly regenerative salamander, the red spotted newt, displays an unexpectedly similar distribution of active germinal niches with mammals under normal physiological conditions.
View Article and Find Full Text PDFCold Spring Harb Protoc
August 2009
During limb regeneration adult tissue is converted into a zone of undifferentiated progenitors called the blastema that reforms the diverse tissues of the limb. Previous experiments have led to wide acceptance that limb tissues dedifferentiate to form pluripotent cells. Here we have reexamined this question using an integrated GFP transgene to track the major limb tissues during limb regeneration in the salamander Ambystoma mexicanum (the axolotl).
View Article and Find Full Text PDF