The challenge of global climate change has drawn people's attention to the issue of carbon emissions. Reducing the use of petroleum-derived materials and increasing the use of biodegradable materials is a current focus of research, especially in the packaging materials industry. This study focused on the use of environmentally friendly plastics and waste paper as the main materials for packaging films.
View Article and Find Full Text PDFIn this study, thermally processed recycled fish teeth (FT) and fish scales, magnesium oxide (MgO), and biobased polyesters were fabricated into new bioactive and environmentally friendly composites. The magnesium oxide was encapsulated into laboratory-made fish scale-derived gelatin to form gelatin-MgO microparticles. Hydroxyapatite (HA) and gelatin were obtained by heat-treating FTs and fish scales, respectively.
View Article and Find Full Text PDFACS Appl Bio Mater
March 2022
The development of green and renewable materials has attracted increasing attention in recent years. Hence, biocomposite-based packaging materials have been investigated to replace petrochemical materials in several industries, such as the food packaging and electronics packaging industries. The tensile and thermal properties of biocomposite-based packaging materials composed of polylactic acid and plant fiber were mainly investigated in the current literature, but fewer studies on the improvement of water resistance and water vapor/oxygen barrier properties of composite materials were performed.
View Article and Find Full Text PDFA biodegradable composite nanofiber containing polyhydroxyalkanoate (PHA) or modified PHA (MPHA) and treated fish-scale powder (TFSP) was prepared and characterized. The powder (20-80 nm) was prepared by grinding after treating FSP with water, acid, and heat (450 °C) to yield the TFSP. Composite nanofibers (100-500 nm long) of TFSP/PHA and TFSP/MPHA were fabricated by electrospinning using a biaxial feed method.
View Article and Find Full Text PDFWe report herein new nanofibers prepared from fish scale gelatine (FSG), modified polylactide (MPLA), and a natural antibacterial agent of freshwater clam (Corbicula fluminea Estefanía) shell powder (FCSP). A preparation of FSG from Mullet scales is also described. To improve the biocompatibility and antibacterial activity of the non-woven nanofibers, MPLA/FCSP was added to enhance their antibacterial properties.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
March 2020
Sponges, which are parasitic on plants widely found in lakes and oceans, represent a vast resource that has yet to be effectively utilised. Sponge spicules (SS), which contain high amounts of silica dioxide, form after long-term biomineralisation. In this study, SS attached to plant bodies were subjected to acid and heat treatments, followed by grinding, to obtain 10-40-nm siliceous sponge spicules (SSS).
View Article and Find Full Text PDFNovel antibacterial properties of composites prepared from thermally treated waste white scallop shell powder (TWWSSP) and modified polylactide (MPLA) are reported. The waste shell (calcium carbonate, CaCO) was calcined at 1000 °C to completely form calcium oxide (CaO) and calcium hydroxide (Ca(OH)). The composition and structure of the calcined product were characterized using energy dispersive spectrometry, Fourier transform infrared spectroscopy, and X-ray diffraction.
View Article and Find Full Text PDF