Cockayne syndrome (CS) is a rare progeroid disorder characterized by growth failure, microcephaly, photosensitivity, and premature aging, mainly arising from biallelic (CS-A) or (CS-B) variants. In this study we describe siblings suffering from classical Cockayne syndrome but without photosensitivity, which delayed a clinical diagnosis for 16 years. By whole-exome sequencing we identified the two novel compound heterozygous variants c.
View Article and Find Full Text PDFUnlabelled: This will be the first publication of Type 1 diabetes(T1D) outcomes in five low-middle-income countries (LMICs)-Laos, Malaysia, Vietnam, Cambodia and Myanmar in the Southeast Asia (SEA) region. The information obtained has been possible due to partnership programmes of non-government organisationAction4Diabetes (A4D) with defined local hospitalsthrough a Memorandum of Understandingsigned with the governments in SEAthat guarantees ongoing supplies of free insulin, blood glucose meter supplies, HbA1c tests and hospital emergency funds.
Participants: Between 2020 and 2021, 383 children and young people with T1D who were active in the A4D supported programmes were reviewed including information on health coverage, multidisciplinary team management, diabetic ketoacidosis (DKA) on admission and insulin regimen.
Background: Neonatal diabetes mellitus (NDM) is defined as insulin-requiring persistent hyperglycemia occurring within the first 6 months of life, which can result from mutations in at least 25 different genes. Activating heterozygous mutations in genes encoding either of the subunits of the ATP-sensitive K channel (K channel; or ) of the pancreatic beta cell are the most common cause of permanent NDM and the second most common cause of transient NDM. Patients with NDM caused by K channel mutations are sensitive to sulfonylurea (SU) treatment; therefore, their clinical management can be improved by replacing insulin with oral agents.
View Article and Find Full Text PDFBackground: Family genetic testing of patients newly diagnosed with a rare genetic disease can improve early diagnosis of family members, allowing patients to receive disease-specific therapies when available. Fabry disease, an X-linked lysosomal storage disorder caused by pathogenic variants in GLA, can lead to end-stage renal disease, cardiac arrhythmias, and stroke. Diagnostic delays are common due to the rarity of the disease and non-specificity of early symptoms.
View Article and Find Full Text PDFOrnithine transcarbamylase deficiency (OTCD) is an X- linked recessive disorder and the most common error of the urea cycle, caused by the mutations in the gene. Due to X-inactivation, 15-20% of female carriers present symptoms of OTCD at late onset. Early diagnosis of OTCD by molecular analysis in females is highly desirable.
View Article and Find Full Text PDFBackground: Glycogen storage diseases (GSDs) are clinically and genetically heterogeneous disorders. Overlapping features between liver GSDs are a major challenge in the clinical diagnosis of them. Genetic testing can provide an early and accurate diagnosis of patients suspected with GSDs.
View Article and Find Full Text PDFPermanent neonatal diabetes mellitus (PNDM) is caused by reduced β-cell number or impaired β-cell function. Understanding of the genetic basis of this disorder highlights fundamental β-cell mechanisms. We performed trio genome sequencing for 44 patients with PNDM and their unaffected parents to identify causative de novo variants.
View Article and Find Full Text PDFTaiwan J Obstet Gynecol
September 2019
Objective: Duchenne Muscular Dystrophy is an X-linked recessive disorder characterized by progressive muscular degeneration, patients often develop cardiac failure in the later stage and death occurs before 20 years of age. For a disease with poor postnatal prognosis such as Duchenne Muscular Dystrophy (DMD), providing the carrier mother with the option of prenatal diagnosis in a subsequent pregnancy is accepted practice in many places where termination of pregnancy is allowed. Though methods of direct sequencing such as Sanger's sequencing has been widely used, Next-Generation Sequencing is been increasingly replacing most of its application.
View Article and Find Full Text PDFMol Genet Metab Rep
September 2018
Background: Expanded newborn screening (ENBS) utilizing tandem mass spectrometry (MS/MS) for inborn metabolic diseases (IMDs), such as organic acidemias (OAs), fatty acid oxidation disorders, (FAODs), and amino acid disorders (AAs), is increasingly popular but has not yet been introduced in many Asian countries. This study aimed to determine the incidence rates of OAs, FAODs, and AAs in Asian countries and Germany using selective screening and ENBS records.
Materials And Methods: Selective screening for IMDs using gas chromatography-mass spectrometry and MS/MS was performed among patients suspected to be afflicted in Asian countries (including Japan, Vietnam, China, and India) between 2000 and 2015, and the results from different countries were compared.
Purpose: To characterize the molecular genetics of autosomal recessive Noonan syndrome.
Methods: Families underwent phenotyping for features of Noonan syndrome in children and their parents. Two multiplex families underwent linkage analysis.
Biol Blood Marrow Transplant
October 2017
There is limited information regarding the long-term outcomes of hematopoietic stem cell transplantation (HSCT) for mucopolysaccharidosis II (MPS II). In this study, clinical, biochemical, and radiologic findings were assessed in patients who underwent HSCT and/or enzyme replacement therapy (ERT). Demographic data for 146 HSCT patients were collected from 27 new cases and 119 published cases and were compared with 51 ERT and 15 untreated cases.
View Article and Find Full Text PDFJ Clin Res Pediatr Endocrinol
September 2017
The pancreatic ATP-sensitive K+ (K-ATP) channel is a key regulator of insulin secretion. Gain-of-function mutations in the genes encoding the Kir6.2 (KCNJ11) and SUR1 (ABCC8) subunits of the channel cause neonatal diabetes, whilst loss-of-function mutations in these genes result in congenital hyperinsulinism.
View Article and Find Full Text PDFUnlabelled: Mucopolysaccharidoses (MPSs) and mucolipidoses (ML) are groups of lysosomal storage disorders in which lysosomal hydrolases are deficient leading to accumulation of undegraded glycosaminoglycans (GAGs), throughout the body, subsequently resulting in progressive damage to multiple tissues and organs. Assays using tandem mass spectrometry (MS/MS) have been established to measure GAGs in serum or plasma from MPS and ML patients, but few studies were performed to determine whether these assays are sufficiently robust to measure GAG levels in dried blood spots (DBS) of patients with MPS and ML.
Material And Methods: In this study, we evaluated GAG levels in DBS samples from 124 MPS and ML patients (MPS I=16; MPS II=21; MPS III=40; MPS IV=32; MPS VI=10; MPS VII=1; ML=4), and compared them with 115 age-matched controls.
Background: Disorders of sex development (DSD) are congenital conditions in which chromosomal, gonadal, or phenotypic sex is atypical. Clinical management of DSD is often difficult and currently only 13% of patients receive an accurate clinical genetic diagnosis. To address this we have developed a massively parallel sequencing targeted DSD gene panel which allows us to sequence all 64 known diagnostic DSD genes and candidate genes simultaneously.
View Article and Find Full Text PDFPurpose: Osteogenesis imperfecta (OI) has not been studied in a Vietnamese population before. The aim of this study was to systematically collect epidemiological information, investigate clinical features and create a clinical database of OI patients in Vietnam for future research and treatment strategy development.
Method: Participants underwent clinical and physical examinations; also medical records were reviewed.
Patients with mucopolysaccharidoses (MPS) have accumulation of glycosaminoglycans in multiple tissues which may cause coarse facial features, mental retardation, recurrent ear and nose infections, inguinal and umbilical hernias, hepatosplenomegaly, and skeletal deformities. Clinical features related to bone lesions may include marked short stature, cervical stenosis, pectus carinatum, small lungs, joint rigidity (but laxity for MPS IV), kyphoscoliosis, lumbar gibbus, and genu valgum. Patients with MPS are often wheelchair-bound and physical handicaps increase with age as a result of progressive skeletal dysplasia, abnormal joint mobility, and osteoarthritis, leading to 1) stenosis of the upper cervical region, 2) restrictive small lung, 3) hip dysplasia, 4) restriction of joint movement, and 5) surgical complications.
View Article and Find Full Text PDFMucopolysaccharidosis IVA (MPS IVA) is caused by deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS), leading to systemic skeletal dysplasia because of excessive storage of keratan sulfate (KS) in chondrocytes. In an effort to determine a precise prognosis and personalized treatment, we aim to characterize clinical, biochemical, and molecular findings in MPS IVA patients, and to seek correlations between genotype, phenotype, and blood and urine KS levels. Mutation screening of GALNS gene was performed in 55 MPS IVA patients (severe: 36, attenuated: 13, undefined: 6) by genomic PCR followed by direct sequence analysis.
View Article and Find Full Text PDFBackground: 46,XY disorders of sex development (46,XY DSD) are genetically heterogeneous conditions. Recently, a few submicroscopic genomic rearrangements have been reported as novel genetic causes of 46,XY DSD.
Methodology/principal Findings: To clarify the role of cryptic rearrangements in the development of 46,XY DSD, we performed array-based comparative genomic hybridization analysis for 24 genetic males with genital abnormalities.
The Human Variome Project (http://www.humanvariomeproject.org) is an international effort aiming to systematically collect and share information on all human genetic variation.
View Article and Find Full Text PDFMucopolysaccharidosis IVA (MPS IVA, Morquio A disease) is an inherited lysosomal storage disorder that features skeletal chondrodysplasia caused by deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS). Human GALNS was bioengineered with the N-terminus extended by the hexaglutamate sequence (E6) to improve targeting to bone (E6-GALNS). We initially assessed blood clearance and tissue distribution.
View Article and Find Full Text PDFMucopolysaccharidosis I (MPS I) is an autosomal recessive disorder caused by deficiency of alpha-L-iduronidase leading to accumulation of its catabolic substrates, dermatan sulfate (DS) and heparan sulfate (HS), in lysosomes. This results in progressive multiorgan dysfunction and death in early childhood. The recent success of enzyme replacement therapy (ERT) for MPS I highlights the need for biomarkers that reflect response to such therapy.
View Article and Find Full Text PDF