The SARS-CoV-2 global pandemic prompted governments, institutions, and researchers to investigate its impact, developing strategies based on general indicators to make the most precise predictions possible. Approaches based on epidemiological models were used but the outcomes demonstrated forecasting with uncertainty due to insufficient or missing data. Besides the lack of data, machine-learning models including random forest, support vector regression, LSTM, Auto-encoders, and traditional time-series models such as Prophet and ARIMA were employed in the task, achieving remarkable results with limited effectiveness.
View Article and Find Full Text PDFInt J Environ Res Public Health
March 2023
The epidemiology of COVID-19 presented major shifts during the pandemic period. Factors such as the most common symptoms and severity of infection, the circulation of different variants, the preparedness of health services, and control efforts based on pharmaceutical and non-pharmaceutical interventions played important roles in the disease incidence. The constant evolution and changes require the continuous mapping and assessing of epidemiological features based on time-series forecasting.
View Article and Find Full Text PDFInt J Environ Res Public Health
November 2021
In this paper, we investigate the influence of holidays and community mobility on the transmission rate and death count of COVID-19 in Brazil. We identify national holidays and hallmark holidays to assess their effect on disease reports of confirmed cases and deaths. First, we use a one-variate model with the number of infected people as input data to forecast the number of deaths.
View Article and Find Full Text PDF