Aspartylglycosaminuria (AGU) is a lysosomal storage disease caused by deficient activity of glycosylasparaginase (AGA), and characterized by motor and mental retardation. Enzyme replacement therapy (ERT) in adult AGU mice with AGA removes the accumulating substance aspartylglucosamine from and reverses pathology in many somatic tissues, but has only limited efficacy in the brain tissue of the animals. In the current work, ERT of AGU mice was initiated at the age of 1 week with three different dosage schedules of recombinant glycosylasparaginase.
View Article and Find Full Text PDFAspartylglycosaminuria (AGU) is caused by deficient enzymatic activity of glycosylasparaginase (GA). The disease is characterized by accumulation of aspartylglucosamine (GlcNAc-Asn) and other glycoasparagines in tissues and body fluids of AGU patients and in an AGU mouse model. In the current study, we characterized a glycoasparagine carrying the tetrasaccharide moiety of alpha-D-Man-(1-->6)-beta-D-Man-(1-->4)-beta-D-GlcNAc-(1-->4)-beta-D-GlcNAc-(1-->N)-Asn (Man2GlcNAc2-Asn) in urine of an AGU patient and also in the tissues of the AGU mouse model.
View Article and Find Full Text PDFAspartylglycosaminuria (AGU), a severe lysosomal storage disease, is caused by the deficiency of the lysosomal enzyme, glycosylasparaginase (GA), and accumulation of aspartylglucosamine (GlcNAc-Asn) in tissues. Here we show that human leukocyte glycosylasparaginase can correct the metabolic defect in Epstein-Barr virus (EBV)-transformed AGU lymphocytes rapidly and effectively by mannose-6-phosphate receptor-mediated endocytosis or by contact-mediated cell-to-cell transfer from normal EBV-transformed lymphocytes, and that 2-7% of normal activity is sufficient to correct the GlcNAc-Asn metabolism in the cells. Cell-to-cell contact is obligatory for the transfer of GA since normal transformed lymphocytes do not excrete GA into extracellular medium.
View Article and Find Full Text PDFAspartylglycosaminuria (AGU), the most common lysosomal disorder of glycoprotein degradation, is caused by deficient activity of glycosylasparaginase (AGA). AGA-deficient mice share most of the clinical, biochemical and histopathologic characteristics of human AGU disease. In the current study, recombinant human AGA administered i.
View Article and Find Full Text PDFMast cell tryptase purified from human adult skin (AS), adult lung (AL) and newborn foreskin (NS) with a monoclonal antitryptase B2 immunoaffinity Sepharose column was further fractionated by HPLC using a Mono-S cation exchange column at pH 6.5. Tryptases exhibited two clearly separated major fractions, both of which also revealed at least two overlapping peaks.
View Article and Find Full Text PDFThe human leukaemia cell line KU812 has previously been used to study basophil differentiation. In this study the authors analysed the capacity of KU812 to produce the mast cell proteinase tryptase and to synthesize factor(s) mitogenic for fibroblasts. KU812 cells were treated with tetradecanoyl-phorbol-13-acetate (TPA), conditioned medium from the human T-cell line Mo (Mo-CM), or cultured under serum free conditions.
View Article and Find Full Text PDFAspartylglycosaminuria (AGU) is the most common disorder of glycoprotein degradation. AGU patients are deficient in glycosylasparaginase (GA), which results in accumulation of aspartylglucosamine in body fluids and tissues. Human glycosylasparaginase was stably overexpressed in NIH-3T3 mouse fibroblasts, in which the unusual posttranslational processing and maturation of the enzyme occurred in a high degree.
View Article and Find Full Text PDF