Publications by authors named "Duncombe T"

Recent investigations into autonomous ingestible microjet devices have demonstrated the feasibility of delivering many drug modalities directly into the gastrointestinal (GI) wall via the oral route. However, the expression and biodistribution of mRNA after such injections remain unexplored. mRNA-lipid nanoparticles (mRNA-LNPs) are promising therapeutics for treating or vaccinating against many diseases and pathogens.

View Article and Find Full Text PDF

Needle-based injections currently enable the administration of a wide range of biomacromolecule therapies across the body, including the gastrointestinal tract, through recent developments in ingestible robotic devices. However, needles generally require training, sharps management and disposal, and pose challenges for autonomous ingestible systems. Here, inspired by the jetting systems of cephalopods, we have developed and evaluated microjet delivery systems that can deliver jets in axial and radial directions into tissue, making them suitable for tubular and globular segments of the gastrointestinal tract.

View Article and Find Full Text PDF

Background: This study explores the infrastructural and organizational risk factors for health care-associated (HCA) Clostridioides difficile infections (CDIs) and methicillin-resistant Staphylococcus aureus (MRSA) in hospitals.

Methods: This is a retrospective observational study involving all eligible inpatient units from 12 hospitals in British Columbia, Canada, from April 1, 2020 to September 16, 2021. The outcomes were the average HCA CDI or MRSA rates.

View Article and Find Full Text PDF

Objective: Food system challenges exacerbate inequalities in access to fresh healthy food and threaten food security. Lack of food security, referred to as food insecurity, is associated with poorer physical and mental health outcomes and has been identified as a key challenge to address by calls for food system transformation. Increasing food production through urban agriculture, the production of fruit and vegetables in urban areas, has been identified as a potentially effective contributor to food system transformation, but the effect of this on household or UK-level food security is unclear.

View Article and Find Full Text PDF

Background: Transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in acute-care settings affects patients, healthcare workers, and the healthcare system. We conducted an analysis of risk factors associated with outbreak severity to inform prevention strategies.

Methods: This cross-sectional analysis of COVID-19 outbreaks was conducted at Fraser Health acute-care sites between March 2020 and March 2021.

View Article and Find Full Text PDF

We introduce the UV-vis spectra-activated droplet sorter (UVADS) for high-throughput label-free chemical identification and enzyme screening. In contrast to previous absorbance-based droplet sorters that relied on single-wavelength absorbance in the visible range, our platform collects full UV-vis spectra from 200 to 1050 nm at up to 2100 spectra per second. Our custom-built open-source software application, "SpectraSorter," enables real-time data processing, analysis, visualization, and selection of droplets for sorting with any set of UV-vis spectral features.

View Article and Find Full Text PDF

The lack of public awareness surrounding the dangers of snakebite envenomation (SBE) is one of the most critical factors contributing to SBE-induced complications, and subsequently exacerbating the number of deaths and disabilities resulting from SBE. In this study, we deployed a multifaceted community education programme to educate students, healthcare professionals and members of the public in rural areas of Tamil Nadu, India about the dangers of SBE, appropriate first aid measures and the 'do's and don'ts' following a snakebite. An assessment of prior knowledge within these communities identified several misconceptions concerning snakes and SBE.

View Article and Find Full Text PDF

In the field of bottom-up synthetic biology, lipid membranes are the scaffold to create minimal cells and mimic reactions and processes at or across the membrane. In this context, we employ here a versatile microfluidic platform that enables precise positioning of nanoliter droplets with user-specified lipid compositions and in a defined pattern. Adjacent droplets make contact and form a droplet interface bilayer to simulate cellular membranes.

View Article and Find Full Text PDF

Droplet microfluidics has become a powerful analytical platform in biological research for conducting high-throughput screening in millions of discrete micro-reactors per hour. While the method facilitates faster and cheaper testing than conventional microtiter plates, the mobile nature of droplets makes micro-reaction tracking a notable challenge. To address this, researchers are developing a variety of tracking methods, ranging from organizing droplets into an index or labeling droplets with a barcode.

View Article and Find Full Text PDF

Surface-assisted laser desorption ionization (SALDI) is an approach for gas-phase ion generation for mass spectrometry using laser excitation on typically conductive or semiconductive nanostructures. Here, we introduce insulator nanostructure desorption ionization mass spectrometry (INDI-MS), a nanostructured polymer substrate for SALDI-MS analysis of small molecules and peptides. INDI-MS surfaces are produced through the self-assembly of a perfluoroalkyl silsesquioxane nanostructures in a single chemical vapor deposition silanization-step.

View Article and Find Full Text PDF

Beneficial plant-microbe interactions offer a sustainable biological solution with the potential to boost low-input food and bioenergy production. A better mechanistic understanding of these complex plant-microbe interactions will be crucial to improving plant production as well as performing basic ecological studies investigating plant-soil-microbe interactions. Here, a detailed description for ecosystem fabrication is presented, using widely available 3D printing technologies, to create controlled laboratory habitats (EcoFABs) for mechanistic studies of plant-microbe interactions within specific environmental conditions.

View Article and Find Full Text PDF

Circulating tumour cells (CTCs) are rare tumour cells found in the circulatory system of certain cancer patients. The clinical and functional significance of CTCs is still under investigation. Protein profiling of CTCs would complement the recent advances in enumeration, transcriptomic and genomic characterization of these rare cells and help define their characteristics.

View Article and Find Full Text PDF

This protocol describes how to perform western blotting on individual cells to measure cell-to-cell variation in protein expression levels and protein state. Like conventional western blotting, single-cell western blotting (scWB) is particularly useful for protein targets that lack selective antibodies (e.g.

View Article and Find Full Text PDF

High throughput, efficient, and readily adoptable analytical tools for the validation and selection of reliable antibody reagents would impact the life sciences, clinical chemistry, and clinical medicine. To directly quantify antibody-antigen association and dissociation rate constants, kon and koff, in a single experiment, we introduce a microfluidic free-standing kinetic polyacrylamide gel electrophoresis (fsKPAGE) assay. Here, an antibody is immobilized in zones along the length of a single freestanding polyacrylamide gel lane of varying cross-sectional width.

View Article and Find Full Text PDF

Pore-gradient microgel arrays enable thousands of parallel high-resolution single-cell protein electrophoresis separations for targets accross a wide molecular mass (25-289 kDa), yet within 1 mm separation distances. Dual crosslinked hydrogels facilitate gel-pore expansion after electrophoresis for efficient and uniform immunoprobing. The photopatterned, light-activated, and acid-expandable hydrogel underpins single-cell protein analysis, here for oncoprotein-related signaling in human breast biopsy.

View Article and Find Full Text PDF

The underlying physical properties of microfluidic tools have led to new biological insights through the development of microsystems that can manipulate, mimic and measure biology at a resolution that has not been possible with macroscale tools. Microsystems readily handle sub-microlitre volumes, precisely route predictable laminar fluid flows and match both perturbations and measurements to the length scales and timescales of biological systems. The advent of fabrication techniques that do not require highly specialized engineering facilities is fuelling the broad dissemination of microfluidic systems and their adaptation to specific biological questions.

View Article and Find Full Text PDF

We describe a platform for high-throughput electrophoretic mobility shift assays (EMSAs) for identification and characterization of molecular binding reactions. A photopatterned free-standing polyacrylamide gel array comprised of 8 mm-scale polyacrylamide gel strips acts as a chassis for 96 concurrent EMSAs. The high-throughput EMSAs was employed to assess binding of the Vc2 cyclic-di-GMP riboswitch to its ligand.

View Article and Find Full Text PDF

Designed for compatibility with slab-gel polyacrylamide gel electrophoresis (PAGE) reagents and instruments, we detail development of free-standing polyacrylamide gel (fsPAG) microstructures supporting electrophoretic performance rivalling that of microfluidic platforms. For the protein electrophoresis study described here, fsPAGE lanes are comprised of a sample reservoir and contiguous separation gel. No enclosed microfluidic channels are employed.

View Article and Find Full Text PDF

In designing a protein electrophoresis platform composed of a single-inlet, single-outlet microchannel powered solely by voltage control (no pumps, values, injectors), we adapted the original protein electrophoresis format-moving boundary electrophoresis (MBE)-to a high-performance, compact microfluidic format. Key to the microfluidic adaptation is minimization of injection dispersion during sample injection. To reduce injection dispersion, we utilize a photopatterned free-solution-polyacrylamide gel (PAG) stacking interface at the head of the MBE microchannel.

View Article and Find Full Text PDF

We introduce the wetting barrier ratchet, a digital microfluidic technology for directed drop transport in an open air environment. Cyclic drop footprint oscillations initiated by orthogonal vibrations as low as 37 μm in amplitude at 82 Hz are rectified into fast (mm/s) and controlled transport along a fabricated ratchet design. The ratchet is made from a simple wettability pattern atop a microscopically flat surface consisting of periodic semi-circular hydrophilic features on a hydrophobic background.

View Article and Find Full Text PDF

Controlled vibration selectively propels multiple microliter-sized drops along microstructured tracks, leading to simple microfluidic systems that rectify oscillations of the three-phase contact line into asymmetric pinning forces that propel each drop in the direction of higher pinning.

View Article and Find Full Text PDF