Introduction: This audit investigated hepatobiliary function imaging in UK hospitals, reviewing protocol differences in acquisition and processing parameters and the effect on calculated gallbladder ejection fraction (GBEF).
Participants And Methods: Two dynamic data sets were available: one continuous dynamic data set, and the other with a 5-min break to administer the fatty stimulus. Participants used a set of 12 anonymized patient data sets most similar to their standard protocol calculating GBEF using their routine method.
Geothermal springs are model ecosystems to investigate microbial biogeography as they represent discrete, relatively homogenous habitats, are distributed across multiple geographical scales, span broad geochemical gradients, and have reduced metazoan interactions. Here, we report the largest known consolidated study of geothermal ecosystems to determine factors that influence biogeographical patterns. We measured bacterial and archaeal community composition, 46 physicochemical parameters, and metadata from 925 geothermal springs across New Zealand (13.
View Article and Find Full Text PDFInfect Control Hosp Epidemiol
October 2017
OBJECTIVE To evaluate the effectiveness of a computerized clinical decision support intervention aimed at reducing inappropriate Clostridium difficile testing DESIGN Retrospective cohort study SETTING University of Pennsylvania Health System, comprised of 3 large tertiary-care hospitals PATIENTS All adult patients admitted over a 2-year period INTERVENTION Providers were required to use an order set integrated into a commercial electronic health record to order C. difficile toxin testing. The order set identified patients who had received laxatives within the previous 36 hours and displayed a message asking providers to consider stopping laxatives and reassessing in 24 hours prior to ordering C.
View Article and Find Full Text PDFCharacterizing the sizes and interactions of macromolecules under native conditions is a challenging problem in many areas of molecular sciences, which fundamentally arises from the polydisperse nature of biomolecular mixtures. Here, we describe a microfluidic platform for diffusional sizing based on monitoring micron-scale mass transport simultaneously in space and time. We show that the global analysis of such combined space-time data enables the hydrodynamic radii of individual species within mixtures to be determined directly by deconvoluting average signals into the contributions from the individual species.
View Article and Find Full Text PDFA 28-year-old woman presented with weight loss and tiredness. Investigations revealed hyperthyroidism. She was commenced on treatment and later became pregnant.
View Article and Find Full Text PDFNuclear medicine computers now commonly offer resolution recovery and other software techniques which have been developed to improve image quality for images with low counts. These techniques potentially mean that these images can give equivalent clinical information to a full-count image. Reducing the number of counts in nuclear medicine images has the benefits of either allowing reduced activity to be administered or reducing acquisition times.
View Article and Find Full Text PDFIntroduction: An audit was carried out into UK glomerular filtration rate (GFR) calculation. The results were compared with an identical 2001 audit.
Methods: Participants used their routine method to calculate GFR for 20 data sets (four plasma samples) in millilitres per minute and also the GFR normalized for body surface area.
Introduction: The Nuclear Medicine Software Quality Group of the Institute of Physics and Engineering in Medicine has conducted a multicentre, multivendor audit to evaluate the use of resolution recovery software from several manufacturers when applied to myocardial perfusion data with half the normal counts acquired under a variety of clinical protocols in a range of departments. The objective was to determine whether centres could obtain clinical results with half-count data processed with resolution recovery software that were equivalent to those obtained using their normal protocols.
Materials And Methods: Sixteen centres selected 50 routine myocardial perfusion studies each, from which the Nuclear Medicine Software Quality Group generated simulated half-count studies using Poisson resampling.
Loss of microbial diversity is considered a major threat because of its importance for ecosystem functions, but there is a lack of conclusive evidence that diversity itself is reduced under anthropogenic stress, and about the consequences of diversity loss. Heavy metals are one of the largest, widespread pollutant types globally, and these represent a significant environmental stressor for terrestrial microbial communities. Using combined metagenomics and functional assays, we show that the compositional and functional response of microbial communities to long-term heavy metal stress results in a significant loss of diversity.
View Article and Find Full Text PDFPurpose: The aim of the study was to evaluate UK-wide interinstitutional reproducibility of left-ventricular functional parameters, end-systolic volume, end-diastolic volume and ejection fraction, obtained from gated myocardial perfusion imaging (GMPI) studies using technetium-99m-labelled radiopharmaceuticals. The study was carried out by the UK Institute of Physics and Engineering in Medicine Nuclear Medicine Software Quality Group.
Materials And Methods: Ten anonymized clinical GMPI studies, five with normal perfusion and five with perfusion defects, were made available in DICOM and proprietary formats for download and through manufacturers' representatives.
The generation of toxic oligomers during the aggregation of the amyloid-β (Aβ) peptide Aβ42 into amyloid fibrils and plaques has emerged as a central feature of the onset and progression of Alzheimer's disease, but the molecular pathways that control pathological aggregation have proved challenging to identify. Here, we use a combination of kinetic studies, selective radiolabeling experiments, and cell viability assays to detect directly the rates of formation of both fibrils and oligomers and the resulting cytotoxic effects. Our results show that once a small but critical concentration of amyloid fibrils has accumulated, the toxic oligomeric species are predominantly formed from monomeric peptide molecules through a fibril-catalyzed secondary nucleation reaction, rather than through a classical mechanism of homogeneous primary nucleation.
View Article and Find Full Text PDFAim: The Nuclear Medicine Software Quality Group of the Institute of Physics and Engineering in Medicine has conducted an audit to compare the ways in which different manufacturers implement the filters used in single-photon emission computed tomography. The aim of the audit was to identify differences between manufacturers' implementations of the same filter and to find means for converting parameters between systems.
Methods: Computer-generated data representing projection images of an ideal test object were processed using seven different commercial nuclear medicine systems.
Much effort has focussed in recent years on probing the interactions of small molecules with amyloid fibrils and other protein aggregates. Understanding and control of such interactions are important for the development of diagnostic and therapeutic strategies in situations where protein aggregation is associated with disease. In this perspective article we give an overview over the toolbox of biophysical methods for the study of such amyloid-small molecule interactions.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2011
The crucial early stages of amyloid growth, in which normally soluble proteins are converted into fibrillar nanostructures, are challenging to study using conventional techniques yet are critical to the protein aggregation phenomena implicated in many common pathologies. As with all nucleation and growth phenomena, it is difficult to track individual nuclei in traditional macroscopic experiments, which probe the overall temporal evolution of the sample, but do not yield detailed information on the primary nucleation step as they mix independent stochastic events into an ensemble measurement. To overcome this limitation, we have developed microdroplet assays enabling us to detect single primary nucleation events and to monitor their subsequent spatial as well as temporal evolution, both of which we find to be determined by secondary nucleation phenomena.
View Article and Find Full Text PDFChemical control of surface functionality and topography is an essential requirement for many technological purposes. In particular, the covalent attachment of monomeric proteins to surfaces has been the object of intense studies in recent years, for applications as varied as electrochemistry, immuno-sensing, and the production of biocompatible coatings. Little is known, however, about the characteristics and requirements underlying surface attachment of supramolecular protein nanostructures.
View Article and Find Full Text PDFSci Total Environ
September 2010
Recent concerns have been raised that plants such as ragwort (Senecio jacobaea), yew (Taxus baccata) and rhododendron (Rhododendron ponticum) that are toxic to livestock may be included in compost windrows but may not be fully detoxified by the composting process. This study investigates the decomposition during composting of toxic pyrrolizidine alkaloids present in ragwort, taxines (A and B) present in yew, and grayanotoxins (GTX I, II, and III) present in rhododendron during composting. Plant samples were contained within microporous bags either towards the edge or within the centre of a pilot-scale compost heap.
View Article and Find Full Text PDFThe physicochemical parameters of biomolecules are the key determinants of the multitude of processes that govern the normal and aberrant behavior of living systems. A particularly important aspect of such behavior is the role it plays in the self-association of proteins to form organized aggregates such as the amyloid or amyloid-like fibrils that are associated with pathological conditions including Alzheimer's disease and Type II diabetes. In this study we describe quantitative quartz crystal microbalance measurements of the kinetics of the growth of amyloid fibrils in a range of crowded environments and in conjunction with theoretical predictions demonstrate the existence of general relationships that link the propensities of protein molecules to aggregate with fundamental parameters that describe their specific structures and local environments.
View Article and Find Full Text PDFUncontrolled fibrous protein aggregation is implicated in a range of aberrant biological phenomena. Much effort has consequently been directed towards establishing quantitative in vitro assays of this process with the aim of probing amyloid growth in molecular detail as well as elucidating the effect of additional species on this reaction. In this paper, we discuss some recent approaches based on label-free technologies focussed on achieving these objectives.
View Article and Find Full Text PDF