Many studies examine antisocial behaviours on social media-such as sharing misinformation or producing hate speech-but far fewer examine how platforms can incentivize more prosocial behaviour. We identify several ways in which social media platforms currently enable such behaviour, including (1) connecting new communities, (2) enabling collective problem-solving and (3) expanding the boundaries of philanthropy. However, we also discuss how some of the factors that enable prosocial behaviour can also empower malicious actors-as well as the challenge of creating prosocial behaviour that is sustainable and impactful offline.
View Article and Find Full Text PDFLarge-scale GPS location datasets hold immense potential for measuring human mobility and interpersonal contact, both of which are essential for data-driven epidemiology. However, despite their potential and widespread adoption during the COVID-19 pandemic, there are several challenges with these data that raise concerns regarding the validity and robustness of its applications. Here we outline two types of challenges-some related to accessing and processing these data, and some related to data quality-and propose several research directions to address them moving forward.
View Article and Find Full Text PDFThe controversy over online misinformation and social media has opened a gap between public discourse and scientific research. Public intellectuals and journalists frequently make sweeping claims about the effects of exposure to false content online that are inconsistent with much of the current empirical evidence. Here we identify three common misperceptions: that average exposure to problematic content is high, that algorithms are largely responsible for this exposure and that social media is a primary cause of broader social problems such as polarization.
View Article and Find Full Text PDFLow uptake of the COVID-19 vaccine in the US has been widely attributed to social media misinformation. To evaluate this claim, we introduce a framework combining lab experiments (total = 18,725), crowdsourcing, and machine learning to estimate the causal effect of 13,206 vaccine-related URLs on the vaccination intentions of US Facebook users ( ≈ 233 million). We estimate that the impact of unflagged content that nonetheless encouraged vaccine skepticism was 46-fold greater than that of misinformation flagged by fact-checkers.
View Article and Find Full Text PDFIn recent years, critics of online platforms have raised concerns about the ability of recommendation algorithms to amplify problematic content, with potentially radicalizing consequences. However, attempts to evaluate the effect of recommenders have suffered from a lack of appropriate counterfactuals-what a user would have viewed in the absence of algorithmic recommendations-and hence cannot disentangle the effects of the algorithm from a user's intentions. Here we propose a method that we call "counterfactual bots" to causally estimate the role of algorithmic recommendations on the consumption of highly partisan content on YouTube.
View Article and Find Full Text PDFCommentaries on the target article offer diverse perspectives on integrative experiment design. Our responses engage three themes: (1) Disputes of our characterization of the problem, (2) skepticism toward our proposed solution, and (3) endorsement of the solution, with accompanying discussions of its implementation in existing work and its potential for other domains. Collectively, the commentaries enhance our confidence in the promise and viability of integrative experiment design, while highlighting important considerations about how it is used.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2024
The notion of common sense is invoked so frequently in contexts as diverse as everyday conversation, political debates, and evaluations of artificial intelligence that its meaning might be surmised to be unproblematic. Surprisingly, however, neither the intrinsic properties of common sense knowledge (what makes a claim commonsensical) nor the degree to which it is shared by people (its "commonness") have been characterized empirically. In this paper, we introduce an analytical framework for quantifying both these elements of common sense.
View Article and Find Full Text PDFAs organizations gravitate to group-based structures, the problem of improving performance through judicious selection of group members has preoccupied scientists and managers alike. However, which individual attributes best predict group performance remains poorly understood. Here, we describe a preregistered experiment in which we simultaneously manipulated four widely studied attributes of group compositions: skill level, skill diversity, social perceptiveness, and cognitive style diversity.
View Article and Find Full Text PDFOnline platforms have banned ("deplatformed") influencers, communities, and even entire websites to reduce content deemed harmful. Deplatformed users often migrate to alternative platforms, which raises concerns about the effectiveness of deplatforming. Here, we study the deplatforming of Parler, a fringe social media platform, between 2020 January 11 and 2021 February 25, in the aftermath of the US Capitol riot.
View Article and Find Full Text PDFThe dominant paradigm of experiments in the social and behavioral sciences views an experiment as a test of a theory, where the theory is assumed to generalize beyond the experiment's specific conditions. According to this view, which Alan Newell once characterized as "playing twenty questions with nature," theory is advanced one experiment at a time, and the integration of disparate findings is assumed to happen via the scientific publishing process. In this article, we argue that the process of integration is at best inefficient, and at worst it does not, in fact, occur.
View Article and Find Full Text PDFPartisan segregation within the news audience buffers many Americans from countervailing political views, posing a risk to democracy. Empirical studies of the online media ecosystem suggest that only a small minority of Americans, driven by a mix of demand and algorithms, are siloed according to their political ideology. However, such research omits the comparatively larger television audience and often ignores temporal dynamics underlying news consumption.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2021
In a large-scale, preregistered experiment on informal political communication, we algorithmically matched participants, varying two dimensions: 1) the degree of incidental similarity on nonpolitical features; and 2) their stance agreement on a contentious political topic. Matched participants were first shown a computer-generated social media profile of their match highlighting all the shared nonpolitical features; then, they read a short, personal, but argumentative, essay written by their match about the reduction of inequality via redistribution of wealth by the government. We show that support for redistribution increased and polarization decreased for participants with both mild and strong views, regardless of their political leaning.
View Article and Find Full Text PDFComplexity-defined in terms of the number of components and the nature of the interdependencies between them-is clearly a relevant feature of all tasks that groups perform. Yet the role that task complexity plays in determining group performance remains poorly understood, in part because no clear language exists to express complexity in a way that allows for straightforward comparisons across tasks. Here we avoid this analytical difficulty by identifying a class of tasks for which complexity can be varied systematically while keeping all other elements of the task unchanged.
View Article and Find Full Text PDFAlthough it is under-studied relative to other social media platforms, YouTube is arguably the largest and most engaging online media consumption platform in the world. Recently, YouTube's scale has fueled concerns that YouTube users are being radicalized via a combination of biased recommendations and ostensibly apolitical "anti-woke" channels, both of which have been claimed to direct attention to radical political content. Here we test this hypothesis using a representative panel of more than 300,000 Americans and their individual-level browsing behavior, on and off YouTube, from January 2016 through December 2019.
View Article and Find Full Text PDFComputational social science is more than just large repositories of digital data and the computational methods needed to construct and analyse them. It also represents a convergence of different fields with different ways of thinking about and doing science. The goal of this Perspective is to provide some clarity around how these approaches differ from one another and to propose how they might be productively integrated.
View Article and Find Full Text PDFSince the 2016 US presidential election, the deliberate spread of misinformation online, and on social media in particular, has generated extraordinary concern, in large part because of its potential effects on public opinion, political polarization, and ultimately democratic decision making. Recently, however, a handful of papers have argued that both the prevalence and consumption of "fake news" per se is extremely low compared with other types of news and news-relevant content. Although neither prevalence nor consumption is a direct measure of influence, this work suggests that proper understanding of misinformation and its effects requires a much broader view of the problem, encompassing biased and misleading-but not necessarily factually incorrect-information that is routinely produced or amplified by mainstream news organizations.
View Article and Find Full Text PDFVirtual labs allow researchers to design high-throughput and macro-level experiments that are not feasible in traditional in-person physical lab settings. Despite the increasing popularity of online research, researchers still face many technical and logistical barriers when designing and deploying virtual lab experiments. While several platforms exist to facilitate the development of virtual lab experiments, they typically present researchers with a stark trade-off between usability and functionality.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2020
We resolve a controversy over two competing hypotheses about why people object to randomized experiments: 1) People unsurprisingly object to experiments only when they object to a policy or treatment the experiment contains, or 2) people can paradoxically object to experiments even when they approve of implementing either condition for everyone. Using multiple measures of preference and test criteria in five preregistered within-subjects studies with 1,955 participants, we find that people often disapprove of experiments involving randomization despite approving of the policies or treatments to be tested.
View Article and Find Full Text PDF"Fake news," broadly defined as false or misleading information masquerading as legitimate news, is frequently asserted to be pervasive online with serious consequences for democracy. Using a unique multimode dataset that comprises a nationally representative sample of mobile, desktop, and television consumption, we refute this conventional wisdom on three levels. First, news consumption of any sort is heavily outweighed by other forms of media consumption, comprising at most 14.
View Article and Find Full Text PDFHow predictable are life trajectories? We investigated this question with a scientific mass collaboration using the common task method; 160 teams built predictive models for six life outcomes using data from the Fragile Families and Child Wellbeing Study, a high-quality birth cohort study. Despite using a rich dataset and applying machine-learning methods optimized for prediction, the best predictions were not very accurate and were only slightly better than those from a simple benchmark model. Within each outcome, prediction error was strongly associated with the family being predicted and weakly associated with the technique used to generate the prediction.
View Article and Find Full Text PDFCan events be accurately described as historic at the time they are happening? Claims of this sort are in effect predictions about the evaluations of future historians; that is, that they will regard the events in question as significant. Here we provide empirical evidence in support of earlier philosophical arguments that such claims are likely to be spurious and that, conversely, many events that will one day be viewed as historic attract little attention at the time. We introduce a conceptual and methodological framework for applying machine learning prediction models to large corpora of digitized historical archives.
View Article and Find Full Text PDFRandomized experiments have enormous potential to improve human welfare in many domains, including healthcare, education, finance, and public policy. However, such "A/B tests" are often criticized on ethical grounds even as similar, untested interventions are implemented without objection. We find robust evidence across 16 studies of 5,873 participants from three diverse populations spanning nine domains-from healthcare to autonomous vehicle design to poverty reduction-that people frequently rate A/B tests designed to establish the comparative effectiveness of two policies or treatments as inappropriate even when universally implementing either A or B, untested, is seen as appropriate.
View Article and Find Full Text PDF