Publications by authors named "Duncan Schwaller"

Gels of edible oils, also called oleogels, are developed as alternative products of solid fats to limit the uptake of saturated and -unsaturated fats and lower the associated risk of coronary disease. The gelation of oils can be achieved with a low molecular weight organogelator (LMWO), a compound that self-assembles at low concentrations in a solid 3D network and provides the mixture its solid-like behavior. We have studied -palmitoyl-L-phenylalanine (Palm-Phe), an endogenous compound ( naturally present in the human body) as a model LMWO of rapeseed oil.

View Article and Find Full Text PDF

The existence of sol-gel transitions is one of the most manifest properties of molecular gels. These transitions reflect their nature since they correspond to the association or dissociation of low weight molecules through non-covalent interactions to form the network constitutive of the gel. Most described molecular gels undergo only one gel-to-sol transition upon heating, and the reverse sol-to-gel transition upon cooling.

View Article and Find Full Text PDF

Palmitoylethanolamide (PEA) is an endogenous compound with no adverse effect for oral intakes of a gram per day. We show that PEA gels edible oils at concentrations as low as 0.5 wt%.

View Article and Find Full Text PDF

The phase diagrams of organogels are necessary for applications and fundamental aspects, for instance to understand their thermodynamics. Differential scanning calorimetry is one of the techniques implemented to map these diagrams. The thermograms of organogels upon heating show broad endotherms, increasing gradually to a maximum, at a temperature Tmax, and decreasing back to the baseline, sometimes 10 °C above.

View Article and Find Full Text PDF

An amide based gelator forms gels in trans-decalin. Below concentrations of 1 wt% the gels melt at temperatures varying with concentration. Above a concentration of 1 wt%, upon heating, the gel transforms into an opaque gel at an invariant temperature, and melts at higher temperature.

View Article and Find Full Text PDF

Some organic compounds are known to self-assemble into nanotubes in solutions, but the packing of the molecules into the walls of the tubes is known only in a very few cases. Herein, we study two compounds forming nanotubes in alkanes. They bear a secondary alkanamide chain linked to a benzoic acid propyl ester (HUB-3) or to a butyl ester (HUB-4).

View Article and Find Full Text PDF

Hydrogen bonds can efficiently guide the self-assembly of organic materials, enabling to tune the properties of the aggregation processes. In the case of π-conjugated materials, several parameters such as temperature, concentration and solvent can be used to modify the aggregation state while tuning the optoelectronic properties. Chirality can be included within the impacting parameters due to the differences in molecular packing.

View Article and Find Full Text PDF