The thin and flexible nature of optical fibres often makes them the ideal technology to view biological processes in-vivo, but current microendoscopic approaches are limited in spatial resolution. Here, we demonstrate a route to high resolution microendoscopy using a multicore fibre (MCF) with an adiabatic multimode-to-single-mode "photonic lantern" transition formed at the distal end by tapering. We show that distinct multimode patterns of light can be projected from the output of the lantern by individually exciting the single-mode MCF cores, and that these patterns are highly stable to fibre movement.
View Article and Find Full Text PDFThis paper demonstrates how research at the intersection of physics, engineering, biology and medicine can be presented in an interactive and educational way to a non-scientific audience. Interdisciplinary research with a focus on prevalent diseases provides a relatable context that can be used to engage with the public. Respiratory diseases are significant contributors to avoidable morbidity and mortality and have a growing social and economic impact.
View Article and Find Full Text PDFThis article deals with stakeholders' interactions and institutional capacity influencing water resource management where competitive demands co-exist. For the case study area of Axios Delta, Northern Greece, a water deficit in the agricultural sector, an unmet environmental flow and a reduced capacity for urban supply during drought conditions are observed. An egocentric network analysis based on desk-study and a series of semi-structured stakeholder interviews reveals how weak stakeholder ties lead to ineffective multilevel governance and, as a result, low water efficiency practices.
View Article and Find Full Text PDF