Telomere function is critical for genomic stability; in the context of a functional TP53 response, telomere erosion leads to a G/S cell-cycle arrest and the induction of replicative senescence, a process that is considered to underpin the ageing process in long-lived species. Abrogation of the TP53 pathway allows for continued cell division, telomere erosion, and the complete loss of telomere function; the ensuing genomic instability facilitates clonal evolution and malignant progression. Telomeres display extensive length heterogeneity in the population that is established at birth, and this affects the individual risk of a broad range of diseases, including cardiovascular disease and cancer.
View Article and Find Full Text PDFThe fundamental basis of T cell memory remains elusive. It is established that antigen stimulation drives clonal proliferation and differentiation, but the relationship between cellular phenotype, replicative history, and longevity, which is likely essential for durable memory, has proven difficult to elucidate. To address these issues, we used conventional markers of differentiation to identify and isolate various subsets of CD8 memory T cells and measured telomere lengths in these phenotypically defined populations using the most sensitive technique developed to date, namely single telomere length analysis (STELA).
View Article and Find Full Text PDFBackground: Glioblastoma is one of the most lethal forms of cancer, with 5-year survival rates of only 6%. Glioblastoma-targeted therapeutics have been challenging to develop due to significant inter- and intra-tumoral heterogeneity. Telomerase reverse transcriptase gene (TERT) promoter mutations are the most common known clonal oncogenic mutations in glioblastoma.
View Article and Find Full Text PDFDNA polymerase theta (POLQ) is a principal component of the alternative non-homologous end-joining (ANHEJ) DNA repair pathway that ligates DNA double-strand breaks. Utilizing independent models of POLQ insufficiency during telomere-driven crisis, we found that cells are resistant to crisis-induced growth deceleration despite sustaining inter-chromosomal telomere fusion frequencies equivalent to wild-type (WT) cells. We recorded longer telomeres in than WT cells pre- and post-crisis, notwithstanding elevated total telomere erosion and fusion rates.
View Article and Find Full Text PDFThe proto-oncogene BCL-3 is upregulated in a subset of colorectal cancers (CRC), where it has been shown to enhance tumour cell survival. However, although increased expression correlates with poor patient prognosis, the role of BCL-3 in determining therapeutic response remains largely unknown. In this study, we use combined approaches in multiple cell lines and pre-clinical mouse models to investigate the function of BCL-3 in the DNA damage response.
View Article and Find Full Text PDFStructural variation (SV) plays a fundamental role in genome evolution and can underlie inherited or acquired diseases such as cancer. Long-read sequencing technologies have led to improvements in the characterization of structural variants (SVs), although paired-end sequencing offers better scalability. Here, we present dysgu, which calls SVs or indels using paired-end or long reads.
View Article and Find Full Text PDFBackground: Depression is a common mood disorder during pregnancy impacting one in every seven women. Children exposed to prenatal depression are more likely to be born at a low birth weight and develop chronic diseases later in life. A proposed hypothesis for this relationship between early exposure to adversity and poor outcomes is accelerated aging.
View Article and Find Full Text PDFDNA-RNA hybrid structures have been detected at the vicinity of DNA double-strand breaks (DSBs) occurring within transcriptional active regions of the genome. The induction of DNA-RNA hybrids strongly affects the repair of these DSBs, but the nature of these structures and how they are formed remain poorly understood. Here we provide evidence that R loops, three-stranded structures containing DNA-RNA hybrids and the displaced single-stranded DNA (ssDNA) can form at sub-telomeric DSBs.
View Article and Find Full Text PDFTelomere biology disorders are complex clinical conditions that arise due to mutations in genes required for telomere maintenance. Telomere length has been utilised as part of the diagnostic work-up of patients with these diseases; here, we have tested the utility of high-throughput STELA (HT-STELA) for this purpose. HT-STELA was applied to a cohort of unaffected individuals (n = 171) and a retrospective cohort of mutation carriers (n = 172).
View Article and Find Full Text PDFIdentifying attributes that distinguish pre-malignant from senescent cells provides opportunities for targeted disease eradication and revival of anti-tumour immunity. We modelled a telomere-driven crisis in four human fibroblast lines, sampling at multiple time points to delineate genomic rearrangements and transcriptome developments that characterize the transition from dynamic proliferation into replicative crisis. Progression through crisis was associated with abundant intra-chromosomal telomere fusions with increasing asymmetry and reduced microhomology usage, suggesting shifts in DNA repair capacity.
View Article and Find Full Text PDFA central paradigm in the field of lymphocyte biology asserts that replicatively senescent memory T cells express the carbohydrate epitope CD57. These cells nonetheless accumulate with age and expand numerically in response to persistent antigenic stimulation. Here, we use in vivo deuterium labeling and ex vivo analyses of telomere length, telomerase activity, and intracellular expression of the cell-cycle marker Ki67 to distinguish between two non-exclusive scenarios: (1) CD57 memory T cells do not proliferate and instead arise via phenotypic transition from the CD57 memory T cell pool; and/or (2) CD57 memory T cells self-renew via intracompartmental proliferation.
View Article and Find Full Text PDFTelomeres are transcribed as long non-coding RNAs called TERRAs (Telomeric repeat containing RNA) that participate in a variety of cellular regulatory functions. High telomerase activity (TA) is associated with endometrial cancer (EC). This study aimed to examine the levels of three TERRAs, transcribed at chromosomes 1q-2q-4q-10q-13q-22q, 16p and 20q in healthy ( = 23) and pathological ( = 24) human endometrium and to examine their association with cellular proliferation, TA and telomere lengths.
View Article and Find Full Text PDFWhen cells progress to malignancy, they must overcome a final telomere-mediated proliferative lifespan barrier called replicative crisis. Crisis is characterized by extensive telomere fusion that drives widespread genomic instability, mitotic arrest, hyperactivation of autophagy, and cell death. Recently, it has become apparent that that the resolution of dicentric chromosomes, which arise from telomere fusions during crisis, can initiate a sequence of events that leads to chromothripsis, a form of extreme genomic catastrophe.
View Article and Find Full Text PDFCurr Opin Genet Dev
February 2020
Spontaneous regression is a recognized phenomenon in chronic lymphocytic leukemia (CLL) but its biological basis remains unknown. We undertook a detailed investigation of the biological and clinical features of 20 spontaneous CLL regression cases incorporating phenotypic, functional, transcriptomic, and genomic studies at sequential time points. All spontaneously regressed tumors were IGHV-mutated with no restricted IGHV usage or B-cell receptor (BCR) stereotypy.
View Article and Find Full Text PDFTelomere erosion, dysfunction, and fusion can lead to a state of cellular crisis characterized by large-scale genome instability. We investigated the impact of a telomere-driven crisis on the structural integrity of the genome by undertaking whole-genome sequence analyses of clonal populations of cells that had escaped crisis. Quantification of large-scale structural variants revealed patterns of rearrangement consistent with chromothripsis but formed in the absence of functional nonhomologous end-joining pathways.
View Article and Find Full Text PDFWe have previously shown that dividing patients with CLL into those with telomeres inside the fusogenic range (TL-IFR) and outside the fusogenic range (TL-OFR) is powerful prognostic tool. Here, we used a high-throughput version of the assay (HT-STELA) to establish whether telomere length could predict for outcome to fludarabine, cyclophosphamide, rituximab (FCR)-based treatment using samples collected from two concurrent phase II studies, ARCTIC and ADMIRE (n = 260). In univariate analysis, patients with TL-IFR had reduced progression-free survival (PFS) (P < 0.
View Article and Find Full Text PDFFusion of critically short or damaged telomeres is associated with the genomic rearrangements that support malignant transformation. We have demonstrated the fundamental contribution of DNA ligase 4-dependent classical non-homologous end-joining to long-range inter-chromosomal telomere fusions. In contrast, localized genomic recombinations initiated by sister chromatid fusion are predominantly mediated by alternative non-homologous end-joining activity that may employ either DNA ligase 3 or DNA ligase 1.
View Article and Find Full Text PDFShortened leukocyte and placental telomeres associated with gestational diabetes mellitus (GDM) suggest this exposure triggers telomere attrition contributing to adverse outcomes. We applied high resolution Single Telomere Length Analysis (STELA) to placenta from GDM pregnancies with different treatment pathways to determine their effectiveness at preventing telomere attrition. Differences in telomere length between control (N = 69), GDM lifestyle intervention (n = 14) and GDM treated with metformin and/or insulin (n = 17) was tested by Analysis of Covariance (ANCOVA) followed by group comparisons using Fisher's least significant difference.
View Article and Find Full Text PDF