Organic semiconductors are a family of pi-conjugated compounds used in many applications, such as displays, bioelectronics, and thermoelectrics. However, their susceptibility to processing-induced contamination is not well understood. Here, it is shown that many organic electronic devices reported so far may have been unintentionally contaminated, thus affecting their performance, water uptake, and thin film properties.
View Article and Find Full Text PDFHow to optimise glucose metabolism in the traumatised human brain remains unclear, including whether injured brain can metabolise additional glucose when supplied. We studied the effect of microdialysis-delivered 1,2-C glucose at 4 and 8 mmol/L on brain extracellular chemistry using bedside ISCUS, and the fate of the C label in the 8 mmol/L group using high-resolution NMR of recovered microdialysates, in 20 patients. Compared with unsupplemented perfusion, 4 mmol/L glucose increased extracellular concentrations of pyruvate (17%, p = 0.
View Article and Find Full Text PDFFollowing traumatic brain injury (TBI), raised cerebral lactate/pyruvate ratio (LPR) reflects impaired energy metabolism. Raised LPR correlates with poor outcome and mortality following TBI. We prospectively recruited patients with TBI requiring neurocritical care and multimodal monitoring, and utilised a tiered management protocol targeting LPR.
View Article and Find Full Text PDFChemical purifications are critical processes across many industries, requiring 10-15% of humanity's global energy budget. Coordination cages are able to catch and release guest molecules based upon their size and shape, providing a new technological basis for achieving chemical separation. Here, we show that aqueous solutions of FeL and CoL cages can be used as liquid membranes.
View Article and Find Full Text PDFA bis-urea-functionalized ditopic subcomponent assembled with 2-formylpyridine and Fe , resulting in a dynamic library of metal-organic assemblies: an irregular Fe L structure and three Fe L stereoisomers: left- and right-handed helicates and a meso-structure. This library reconfigured in response to the addition of monosaccharide derivatives, which served as guests for specific library members, and the rate of saccharide mutarotation was also enhanced by the library. The (P) enantiomer of the Fe L helical structure bound β-D-glucose selectively over α-D-glucose.
View Article and Find Full Text PDFChemical separations technologies are energetically costly; lowering this cost through the development of new molecular separation methods would thus enable significant energy savings. Molecules could, for example, be selectively encapsulated and separated using coordination cages, which can be designed with cavities of tailored sizes and geometries. Before cages can be used to perform industrially relevant separations, however, the experimental and theoretical foundations for this technology must be established.
View Article and Find Full Text PDFMetabolic dysfunction is a key pathophysiological process in the acute phase of traumatic brain injury (TBI). Although changes in brain glucose metabolism and extracellular lactate/pyruvate ratio are well known, it was hitherto unknown whether these translate to downstream changes in ATP metabolism and intracellular pH. We have performed the first clinical voxel-based phosphorus magnetic resonance spectroscopy (P MRS) in 13 acute-phase major TBI patients versus 10 healthy controls (HCs), at 3T, focusing on eight central 2.
View Article and Find Full Text PDFA key pathophysiological process and therapeutic target in the critical early post-injury period of traumatic brain injury (TBI) is cell mitochondrial dysfunction; characterised by elevation of brain lactate/pyruvate (L/P) ratio in the absence of hypoxia. We previously showed that succinate can improve brain extracellular chemistry in acute TBI, but it was not clear if this translates to a change in downstream energy metabolism. We studied the effect of microdialysis-delivered succinate on brain energy state (phosphocreatine/ATP ratio (PCr/ATP)) with P MRS at 3T, and tissue NADH/NAD redox state using microdialysis (L/P ratio) in eight patients with acute major TBI (mean 7 days).
View Article and Find Full Text PDFMetabolic abnormalities occur after traumatic brain injury (TBI). Glucose is conventionally regarded as the major energy substrate, although lactate can also be an energy source. We compared 3-C lactate metabolism in TBI with "normal" control brain and muscle, measuring C-glutamine enrichment to assess tricarboxylic acid (TCA) cycle metabolism.
View Article and Find Full Text PDFTo elucidate the role of fluoroethylene carbonate (FEC) as an additive in the standard carbonate-based electrolyte for Li-ion batteries, the solid electrolyte interphase (SEI) formed during electrochemical cycling on silicon anodes was analyzed with a combination of solution and solid-state NMR techniques, including dynamic nuclear polarization. To facilitate characterization via 1D and 2D NMR, we synthesized C-enriched FEC, ultimately allowing a detailed structural assignment of the organic SEI. We find that the soluble poly(ethylene oxide)-like linear oligomeric electrolyte breakdown products that are observed after cycling in the standard ethylene carbonate-based electrolyte are suppressed in the presence of 10 vol% FEC additive.
View Article and Find Full Text PDFBiogenic alkenes, which are among the most abundant volatile organic compounds in the atmosphere, are readily oxidized by ozone. Characterizing the reactivity and kinetics of the first-generation products of these reactions, carbonyl oxides (often named Criegee intermediates), is essential in defining the oxidation pathways of organic compounds in the atmosphere but is highly challenging due to the short lifetime of these zwitterions. Here, we report the development of a novel online method to quantify atmospherically relevant Criegee intermediates (CIs) in the gas phase by stabilization with spin traps and analysis with proton-transfer reaction mass spectrometry.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
July 2017
Following traumatic brain injury, complex cerebral energy perturbations occur. Correlating with unfavourable outcome, high brain extracellular lactate/pyruvate ratio suggests hypoxic metabolism and/or mitochondrial dysfunction. We investigated whether focal administration of succinate, a tricarboxylic acid cycle intermediate interacting directly with the mitochondrial electron transport chain, could improve cerebral metabolism.
View Article and Find Full Text PDFIncreased 'anaerobic' glucose metabolism is observed after traumatic brain injury (TBI) attributed to increased glycolysis. An alternative route is the pentose phosphate pathway (PPP), which generates putatively protective and reparative molecules. To compare pathways we employed microdialysis to perfuse 1,2-(13)C2 glucose into the brains of 15 TBI patients and macroscopically normal brain in six patients undergoing surgery for benign tumors, and to simultaneously collect products for nuclear magnetic resonance (NMR) analysis.
View Article and Find Full Text PDFHuman brain chemistry is incompletely understood and better methodologies are needed. Traumatic brain injury (TBI) causes metabolic perturbations, one result of which includes increased brain lactate levels. Attention has largely focussed on glycolysis, whereby glucose is converted to pyruvate and lactate, and is proposed to act as an energy source by feeding into neurons' tricarboxylic acid (TCA) cycle, generating ATP.
View Article and Find Full Text PDFEnergy metabolism in the human brain is not fully understood. Classically, glucose is regarded as the major energy substrate. However, lactate (conventionally a product of anaerobic metabolism) has been proposed to act as an energy source, yet whether this occurs in man is not known.
View Article and Find Full Text PDF