The in situ spectroelectrochemical cyclic voltammetric studies of the antimony-monocapped nickel(II) and iron(II) tris-pyridineoximates with a labile triethylantimony cross-linking group and Zr(IV)/Hf(IV) phthalocyaninate complexes were performed in order to understand the nature of the redox events in the molecules of heterodinuclear zirconium(IV) and hafnium(IV) phthalocyaninate-capped derivatives. Electronic structures of their 1e-oxidized and 1e-electron-reduced forms were experimentally studied by electron paramagnetic resonance (EPR) spectroscopy and UV-vis-near-IR spectroelectrochemical experiments and supported by density functional theory (DFT) calculations. The investigated hybrid molecular systems that combine a transition metal (pseudo)clathrochelate and a Zr/Hf-phthalocyaninate moiety exhibit quite rich redox activity both in the cathodic and in the anodic region.
View Article and Find Full Text PDFThe unique properties of graphene, transition-metal dichalcogenides and other two-dimensional (2D) materials have boosted interest in layered coordination solids. In particular, 2D materials that behave as both conductors and magnets could find applications in quantum magnetoelectronics and spintronics. Here, we report the synthesis of CrCl(pyrazine), an air-stable layered solid, by reaction of CrCl with pyrazine (pyz).
View Article and Find Full Text PDFThe mononuclear complex (BuN)[ReCl(CN)]·2DMA (DMA = N,N-dimethylacetamide) displays intricate magnetization dynamics, implying Orbach, direct, and Raman-type relaxation processes. The Orbach relaxation process is characterized by an energy barrier of 39 K (27 cm) that is discussed based on high-field electron paramagnetic resonance (EPR), inelastic neutron scattering and frequency-domain THz EPR investigations.
View Article and Find Full Text PDF