This work presents an experimental analysis related to 3D-printed carbon-fiber-reinforced-polymer (CFRP) machining. A polyethylene-terephthalate-glycol (PETG)-based composite, reinforced with 20% carbon fibers, was selected as the test material. The aim of the study was to evaluate the influence of cutting conditions used in light operations on the generated surface quality of the 3D-printed specimens.
View Article and Find Full Text PDFRecent developments in incremental sheet forming have resulted in the creation of novel manufacturing processes that are highly adaptable and could bring significant economic benefits for advanced technologies and low-volume production. In this manuscript, the following variables were examined: the variation in the deformation forces for a part with a pyramidal trunk shape; the variation in the deformations and thinning of the Al 3003 material during the incremental forming process; and the variation in the accuracy of the incrementally formed part and the quality of the surfaces (surface roughness). The components of the forces in the incremental forming have increasing values from the beginning of the process to the maximum value due to the hardening process.
View Article and Find Full Text PDFSurface texturing is an engineering technology used in order to improve the surface characteristic of plastic parts obtained by injection molding. Applying this process not only changes the part surface properties, but also its topography. The novel functionalities of plastic products become useful when other materials make contact with the textured surface.
View Article and Find Full Text PDFThe paper aims to investigate the behavior of Arboblend V2 Nature biopolymer samples covered with three ceramic powders, Amdry 6420 (CrO), Metco 143 (ZrO 18TiO 10YO) and Metco 136F (CrO-xSiO-yTiO). The coated samples were obtained by injection molding, and the micropowder deposition was achieved by using the Atmospheric Plasma Spray (APS) method, with varied thickness layers. The present study will only describe the results for nine-layer deposition because, as the number of layers' increases, the surface quality and mechanical/thermal characteristics such as wear, hardness and thermal resistance are also increased.
View Article and Find Full Text PDFBiodegradable materials investigation has become a necessity and a direction for many researchers worldwide. The main goal is to find sustainable alternatives which gradually replace plastics based on fossil resources from the market, because they are very harmful to the environment and to overall quality of life. In order to get to the stage of obtaining different functional parts from biodegradable materials, it is necessary to study their properties.
View Article and Find Full Text PDFDue to the pressing problems of today's world, regarding both the finding of new, environmentally friendly materials which have the potential to replace classic ones, and the need to limit the accelerated spread of bacteria in hospitals, offices and other types of spaces, many researchers have chosen to develop their work in this field. Thus, biopolymeric materials have evolved so much that they are gradually becoming able to remove fossil-based plastics from major industries, which are harmful to the environment and implicitly to human health. The biopolymer employed in the present study, Arboblend V2 Nature with silver nanoparticle content (AgNP) meets both aspects mentioned above.
View Article and Find Full Text PDFIt is essential to combine current state-of-the-art technologies such as additive manufacturing with current ecological needs. Due to the increasing demand for non-toxic biodegradable materials and products, human society has been searching for new materials. Consequently, it is compulsory to identify the qualities of these materials and their behavior when subjected to various external factors, to find their optimal solutions for application in various fields.
View Article and Find Full Text PDFIn order to find new ways to ensure sustainable development on a global level, it is essential to combine current top technologies, such as additive manufacturing, with the economic, ecological, and social fields. One objective of this paper refers to wire manufacture such as Arboblend V2 Nature, Arbofill Fichte, and Arboblend V2 Nature reinforced with Extrudr BDP "Pearl" (BDP-Biodegradable Plastic) in order to replace the plastic materials. After wire manufacture by extrusion, the diameter accuracy was analyzed compared with the Fiber Wood wire using SEM analyses and also EDAX-Energy Dispersive X-ray Analysis and DSC-Differential Scanning Calorimetry analyses were done in order to identify their elemental composition and the phase transitions suffered by the materials during heating.
View Article and Find Full Text PDF