Publications by authors named "Dumitru Doru Burduhos Nergis"

Article Synopsis
  • * The study analyzes various properties of the mine tailings, including particle size, chemical composition, and their reactivity in alkaline conditions, which are crucial for the geopolymerization process.
  • * Results indicate that heavy metals in the tailings remain mostly inert during geopolymer creation, suggesting that the geopolymers produced will have a minimal negative impact on the environment.
View Article and Find Full Text PDF

This manuscript presents an experimental investigation of the friction and wear properties of poly (methyl methacrylate) (PMMA) nanocomposites reinforced with functionalized multi-walled carbon nanotubes (MWCNTs). The aim of this study is to evaluate the potential of MWCNTs as a reinforcement material for enhancing the tribological performance of PMMA. Three types of multi-walled carbon nanotubes, i.

View Article and Find Full Text PDF

Concrete, one of the most often-used building materials today, is the cornerstone of modern buildings all over the world, being used for foundations, pavements, building walls, architectural structures, highways, bridges, overpasses, and so on [...

View Article and Find Full Text PDF

Across the world, any activity associated with the nuclear fuel cycle such as nuclear facility operation and decommissioning that produces radioactive materials generates ultramodern civilian radioactive waste, which is quite hazardous to human health and the ecosystem. Therefore, the development of effectual and commanding management is the need of the hour to make certain the sustainability of the nuclear industries. During the management process of waste, its immobilization is one of the key activities conducted with a view to producing a durable waste form which can perform with sustainability for longer time frames.

View Article and Find Full Text PDF

This study was carried out to investigate the effect of the diamond-shaped Interlocking Chain Plastic Bead (ICPB) on fiber-reinforced fly ash-based geopolymer concrete. In this study, geopolymer concrete was produced using fly ash, NaOH, silicate, aggregate, and nylon66 fibers. Characterization of fly ash-based geopolymers (FGP) and fly ash-based geopolymer concrete (FRGPC) included chemical composition via XRF, functional group analysis via FTIR, compressive strength determination, flexural strength, density, slump test, and water absorption.

View Article and Find Full Text PDF

The applications of carbon fiber reinforced polymer composites (CFRPCs) in aerospace, automotive, electronics and lab-on-chip devices require precise machining processes. Over the past decade, there have been numerous attempts to machine CFRPCs using both traditional and unconventional machining techniques. However, because of their limitations, these methods have not gained widespread acceptance.

View Article and Find Full Text PDF

In this study, ground glass powder and crushed waste glass were used to replace coarse and fine aggregates. Within the scope of the study, fine aggregate (FA) and coarse aggregate (CA) were changed separately with proportions of 10%, 20%, 40%, and 50%. According to the mechanical test, including compression, splitting tensile, and flexural tests, the waste glass powder creates a better pozzolanic effect and increases the strength, while the glass particles tend to decrease the strength when they are swapped with aggregates.

View Article and Find Full Text PDF

The presence of laryngeal disease affects vocal fold(s) dynamics and thus causes changes in pitch, loudness, and other characteristics of the human voice. Many frameworks based on the acoustic analysis of speech signals have been created in recent years; however, they are evaluated on just one or two corpora and are not independent to voice illnesses and human bias. In this article, a unified wavelet-based paradigm for evaluating voice diseases is presented.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigated how waste glass powder (WGP) affects the mechanical properties of concrete by testing different ratios of WGP as a partial cement replacement (0% to 50%).
  • It found that a 20% WGP substitution provided optimal compressive strength, while a combination of WGP and crushed glass particles showed better performance at a 10% replacement level due to improved workability.
  • Scanning electron microscope (SEM) analysis revealed good adhesion between the waste glass and cement, leading to practical equations for predicting concrete performance with waste glass.
View Article and Find Full Text PDF

Joining immiscible materials such as copper and stainless steel together is a significant concern due to distinct mechanical and metallurgical properties across the joint line, such as melting points, the coefficient of linear thermal expansion, and thermal conductivity. The joint properties of copper to stainless steel welds are in great demand for various mechanical components of the international thermonuclear experimental reactor, ultra-high vacuum system, plan wave linear-accelerator or linac structure, and heat exchanger. These dissimilar-metals joints offer excellent flexibility in design and production, leading to a robust structure for many cutting-edge applications.

View Article and Find Full Text PDF

The purpose of this research is to emphasize the importance of mental health and contribute to the overall well-being of humankind by detecting stress. Stress is a state of strain, whether it be mental or physical. It can result from anything that frustrates, incenses, or unnerves you in an event or thinking.

View Article and Find Full Text PDF

Global consumption trends point to rising demand for organic food as people become more health-conscious. The factors that people consider while making initial organic purchases have been discussed at length. However, the published research is scant about the factors that affect consumers' propensity to repurchase organic goods.

View Article and Find Full Text PDF

As the demand for nonrenewable natural resources, such as aggregate, is increasing worldwide, new production of artificial aggregate should be developed. Artificial lightweight aggregate can bring advantages to the construction field due to its lower density, thus reducing the dead load applied to the structural elements. In addition, application of artificial lightweight aggregate in lightweight concrete will produce lower thermal conductivity.

View Article and Find Full Text PDF

Geopolymer materials are used as construction materials due to their lower carbon dioxide (CO) emissions compared with conventional cementitious materials. An example of a geopolymer material is alkali-activated kaolin, which is a viable alternative for producing high-strength ceramics. Producing high-performing kaolin ceramics using the conventional method requires a high processing temperature (over 1200 °C).

View Article and Find Full Text PDF

Geopolymers, or also known as alkali-activated binders, have recently emerged as a viable alternative to conventional binders (cement) for soil stabilization. Geopolymers employ alkaline activation of industrial waste to create cementitious products inside treated soils, increasing the clayey soils' mechanical and physical qualities. This paper aims to review the utilization of fly ash and ground granulated blast furnace slag (GGBFS)-based geopolymers for soil stabilization by enhancing strength.

View Article and Find Full Text PDF

Coal ash-based geopolymers with mine tailings addition activated with phosphate acid were synthesized for the first time at room temperature. In addition, three types of aluminosilicate sources were used as single raw materials or in a 1/1 wt. ratio to obtain five types of geopolymers activated with HPO.

View Article and Find Full Text PDF

Developing non-destructive methods (NDT) that can deliver faster and more accurate results is an objective pursued by many researchers. The purpose of this paper is to present a new approach in predicting the concrete compressive strength through means of ultrasonic testing for non-destructive determination of the dynamic and static modulus of elasticity. For this study, the dynamic Poisson's coefficient was assigned values provided by technical literature.

View Article and Find Full Text PDF

Underwater concrete is a cohesive self-consolidated concrete used for concreting underwater structures such as bridge piers. Conventional concrete used anti-washout admixture (AWA) to form a high-viscosity underwater concrete to minimise the dispersion of concrete material into the surrounding water. The reduction of quality for conventional concrete is mainly due to the washing out of cement and fine particles upon casting in the water.

View Article and Find Full Text PDF

Geopolymers are zeolites like structures based on hydrated aluminosilicates units of SiO and AlO. These units, known as poly(sialate), poly(sialate)-siloxo or poly(sialate)-disiloxo are chemically balanced by the group I cations of K, Li, or Na. Simultaneously, the chemical reaction of formation, known as geopolymerization, governs the orientation of the unit, generating mesoporous structures.

View Article and Find Full Text PDF

In this paper, the effect on thermal behavior and compounds mineralogy of replacing different percentages of fly ash with compact particles was studied. A total of 30% of fly ash was replaced with mass powder glass (PG), 70% with mass natural aggregates (S), and 85% with mass PG and S. According to this study, the obtained fly ash based geopolymer exhibits a 20% mass loss in the 25-300 °C temperature range due to the free or physically bound water removal.

View Article and Find Full Text PDF