Liver sinusoidal endothelial cells (LSECs) which make up the fenestrated wall of the hepatic sinusoids, are active scavenger cells involved in blood waste clearance and liver immune functions. Dexamethasone is a synthetic glucocorticoid commonly used in the clinic and as cell culture supplement. However, the response is dependent on tissue, cell type, and cell state.
View Article and Find Full Text PDFMitophagy is the degradation of surplus or damaged mitochondria by autophagy. In addition to programmed and stress-induced mitophagy, basal mitophagy processes exert organelle quality control. Here, we show that the sorting and assembly machinery (SAM) complex protein SAMM50 interacts directly with ATG8 family proteins and p62/SQSTM1 to act as a receptor for a basal mitophagy of components of the SAM and mitochondrial contact site and cristae organizing system (MICOS) complexes.
View Article and Find Full Text PDFThe liver is constantly exposed to dietary antigens, viruses, and bacterial products with inflammatory potential. For decades cellular uptake of virus has been studied in connection with infection, while the few studies designed to look into clearance mechanisms focused mainly on the role of macrophages. In recent years, attention has been directed towards the liver sinusoidal endothelial cells (LSECs), which play a central role in liver innate immunity by their ability to scavenge pathogen- and damage-associated molecular patterns.
View Article and Find Full Text PDFNeuroblastoma is a malignancy arising from the developing sympathetic nervous system and the most common and deadly cancer of infancy. New therapies are needed to improve the prognosis for high-risk patients and to reduce toxicity and late effects. Spleen tyrosine kinase (SYK) has previously been identified as a promising drug target in various inflammatory diseases and cancers but has so far not been extensively studied as a potential therapeutic target in neuroblastoma.
View Article and Find Full Text PDFLiver disease is a leading cause of morbidity and mortality worldwide. Recently, the liver non-parenchymal cells have gained increasing attention for their potential role in the development of liver disease. Liver sinusoidal endothelial cells (LSECs), a specialized type of endothelial cells that have unique morphology and function, play a fundamental role in maintaining liver homeostasis.
View Article and Find Full Text PDFMesoporous nanomaterials were used to prevent protein haze in Muscat Ottonel and Pedro Ximénez wines. Major volatile compounds, polyols and turbidity were analyzed in fined wines and the results were compared with untreated and fined with bentonite wines. Two commercial mesoporous nanomaterial labelled as SBA-15 and MCM-41 provided a notable turbidity reduction and prevent protein haze as was demonstrated by the heat stability tests.
View Article and Find Full Text PDFA new family of CaaX competitive inhibitors of human farnesyltransferase based on phenothiazine and carbazole skeleton bearing a l-cysteine, l-methionine, l-serine or l-valine moiety was designed, synthesized and biologically evaluated. Phenothiazine derivatives proved to be more active than carbazole-based compounds. Phenothiazine 1b with cysteine residue was the most promising inhibitor of human farnesyltransferase in the current study.
View Article and Find Full Text PDFNovel phenothiazine derivatives bearing an amino acid residue were synthesized via peptide chemistry, and evaluated for their inhibitory potential on human farnesyltransferase. The phenothiazine unit proved to be an important bulky unit in the structure of the synthesized inhibitors. Propargyl ester 20 bearing a tyrosine residue exhibited the best biological potential in vitro in the present study.
View Article and Find Full Text PDFPerturbed action of signal transduction pathways, including the mitogen-activated protein (MAP) kinase pathways, is one of the hallmarks of many cancers. While the implication of the typical MAP kinase pathways ERK1/2-MEK1/2, p38MAPK and JNK is well established, recent findings illustrate that the atypical MAP kinase ERK3/4-MK5 may also be involved in tumorigenic processes. Remarkably, the ERK3/4-MK5 pathway seems to possess anti-oncogenic as well as pro-oncogenic properties in cell culture and aninal models.
View Article and Find Full Text PDFAim: To identify novel substrates for the mitogen-activated protein kinase-activated protein kinase 5 (MK5).
Methods: Yeast two-hybrid screening with MK5 as bait was used to identify novel possible interaction partners. The binding of putative partner was further examined by glutathione S-transferase (GST) pull-down, co-immunoprecipitation and fluorescence resonance energy transfer (FRET) analysis.
Mitogen-activated protein kinases (MAPKs) are a family of proteins that constitute signaling pathways involved in processes that control gene expression, cell division, cell survival, apoptosis, metabolism, differentiation and motility. The MAPK pathways can be divided into conventional and atypical MAPK pathways. The first group converts a signal into a cellular response through a relay of three consecutive phosphorylation events exerted by MAPK kinase kinases, MAPK kinase, and MAPK.
View Article and Find Full Text PDFBackground: Classical mammalian mitogen-activated protein kinase (MAPK) pathways consist of a cascade of three successive phosphorylation events resulting in the phosphorylation of a variety of substrates, including another class of protein kinases referred to as MAPK-activating protein kinases (MAPKAPKs). The MAPKAPKs MK2, MK3 and MK5 are closely related, but MK2 and MK3 are the major downstream targets of the p38MAPK pathway, while MK5 can be activated by the atypical MAPK ERK3 and ERK4, protein kinase A (PKA), and maybe p38MAPK. MK2, MK3, and MK5 can phosphorylate the common substrate small heat shock protein 27 (HSP27), a modification that regulates the role of HSP27 in actin polymerization.
View Article and Find Full Text PDFJ Recept Signal Transduct Res
February 2011
Typical mammalian mitogen-activated protein kinase (MAPK) pathways consist of a cascade of three consecutive phosphorylation events exerted by a MAPK kinase kinase (MAPKKK), a MAPK kinase (MAPKK), and finally a MAPK. MAPKs not only target non-protein kinase substrates, they can also phosphorylate other protein kinases designated as MAPK-activated protein kinases (MAPKAPK). The MAPKAPK family includes the ribosomal-S6-kinases (RSK1-4), the MAPK-interacting kinases (MNK1 and 2), the mitogen-and stress-activated kinases (MSK1 and 2), and the MAPKAPK (MK2, 3, and 5) subfamilies.
View Article and Find Full Text PDFThe mitogen-activated protein kinase-activated protein kinase-5 (MK5) resides predominantly in the nucleus of resting cells, but p38(MAPK), extracellular signal-regulated kinases-3 and -4 (ERK3 and ERK4), and protein kinase A (PKA) induce nucleocytoplasmic redistribution of MK5. The mechanism by which PKA causes nuclear export remains unsolved. In the study reported here we demonstrated that Ser-115 is an in vitro PKA phosphoacceptor site, and that PKA, but not p38(MAPK), ERK3 or ERK4, is unable to redistribute MK5 S115A to the cytoplasm.
View Article and Find Full Text PDFMarasa et al. (Research Article, 27 October 2009, DOI: 10.1126/scisignal.
View Article and Find Full Text PDFRev Med Chir Soc Med Nat Iasi
August 2007
Unlabelled: The aim was to determine the influence of atenolol on lidocaine pharmacokinetics in rats for one hour interval of time (average of a dental intervention). The study was carried out on 2 groups of Wistar rats treated with saline solution (0.5 ml/kg), respectively with atenolol (1.
View Article and Find Full Text PDFArch Roum Pathol Exp Microbiol
December 1968
Rev Med Chir Soc Med Nat Iasi
November 1968