Publications by authors named "Dumeige Y"

Climate-active gases, notably carbon dioxide (CO), methane (CH), and nitrous oxide (NO), display fundamental absorption bands in the mid-infrared (mid-IR). The detection and monitoring of those gases could be enabled by the development of mid-IR optical sources. Broadband mid-IR on-chip light emission from rare-earth-doped chalcogenide photonic integrated circuits could provide a compact, efficient, and cost-effective gas sensing solution.

View Article and Find Full Text PDF

Porous germanium is a promising material for sensing applications in the mid-infrared wavelength range due to its biocompatibility, large internal surface area, open pores network and widely tunable refractive index, as well as its large spectral transparency window ranging from 2 to 15 μm. Multilayers, such as Bragg reflectors and microcavities, based on porous germanium material, are designed and their optical spectra are simulated to enable SF gas-sensing applications at a wavelength of 10.55 µm, which corresponds to its major absorption line.

View Article and Find Full Text PDF

III-V semiconductors grown on silicon recently appeared as a promising platform to decrease the cost of photonic components and circuits. For nonlinear optics, specific features of the III-V crystal arising from the growth on the nonpolar Si substrate and called antiphase domains (APDs) offer a unique way to engineer the second-order properties of the semiconductor compound. Here we demonstrate the fabrication of microdisk resonators at the interface between a gallium-phosphide layer and its silicon substrate.

View Article and Find Full Text PDF

We propose a hybrid laser system consisting of a semiconductor external cavity laser associated to an intra-cavity diamond etalon doped with nitrogen-vacancy color centers. We consider laser emission tuned to the infrared absorption line that is enhanced under the magnetic field dependent nitrogen-vacancy electron spin resonance and show that this architecture leads to a compact solid-state magnetometer that can be operated at room-temperature. The sensitivity to the magnetic field limited by the photonshot-noise of the output laser beam is estimated to be less than 1 pT/Hz.

View Article and Find Full Text PDF

We propose the use of a diamond waveguide structure to enhance the sensitivity of magnetometers relying on the detection of the spin state of nitrogen-vacancy ensembles in diamond by infrared optical absorption. An optical waveguide structure allows for enhanced optical path-lengths avoiding the use of optical cavities and complicated setups. The presented design for diamond-based magnetometers enables miniaturization while maintaining high sensitivity and forms the basis for magnetic field sensors applicable in biomedical, industrial and space-related applications.

View Article and Find Full Text PDF

Whispering gallery mode resonators are key devices for integrated photonics. Despite their generalization in fundamental and applied science, information on spatial confinement of light in these structures is mostly retrieved from purely spectral analysis. In this work, we present a detailed spectral and spatial characterization of whispering gallery modes in active semiconductor microdisk resonators by use of hyperspectral cathodoluminescence.

View Article and Find Full Text PDF

A compact amplifier based on chalcogenide Pr-doped micro-disk coupled to two ridge waveguides is designed and refined by means of a home-made computer code. The gain G ≈ 7.9 dB is simulated for a Pr concentration of 10 000 ppm, input signal power of -30 dBm at the wavelength 4.

View Article and Find Full Text PDF

We propose a novel phase-matching scheme in GaP whispering-gallery-mode microdisks grown on Si substrate combining modal and 4¯ -quasi-phase-matching for second-harmonic-generation. The technique consists in unlocking parity-forbidden processes by tailoring the antiphase domain distribution in the GaP layer. Our proposal can be used to overcome the limitations of form birefringence phase-matching and 4¯ -quasi-phase-matching using high order whispering-gallery-modes.

View Article and Find Full Text PDF

Optical microcavities with ultralong photon storage times are of central importance for integrated nanophotonics. To date, record quality (Q) factors up to 10^{11} have been measured in millimetric-size single-crystal whispering-gallery-mode (WGM) resonators, and 10^{10} in silica or glass microresonators. We show that, by introducing slow-light effects in an active WGM microresonator, it is possible to enhance the photon lifetime by several orders of magnitude, thus circumventing both fabrication imperfections and residual absorption.

View Article and Find Full Text PDF

We propose a flexible scheme based on three coupled optical microcavities that permits us to achieve stable oscillations in the microwave range, the frequency of which depends only on the cavity coupling rates. We find that the different dynamical regimes (soft and hard excitation) affect the oscillation intensity, but not their periods. This configuration may permit us to implement compact hyper-parametric sources on an integrated optical circuit with interesting applications in communications, sensing, and metrology.

View Article and Find Full Text PDF

Two coupled microresonator systems with instantaneous nonlinear index can exhibit self-pulsing behavior and could be used as all-optical integrated microwave generators. The frequency of the RF signal is limited by the photon lifetime of the resonators. For oscillations at tens of GHz, semiconductor microdisks with moderate quality factors (≈10(4)) can be used.

View Article and Find Full Text PDF

We demonstrate a cavity-enhanced room-temperature magnetic field sensor based on nitrogen-vacancy centers in diamond. Magnetic resonance is detected using absorption of light resonant with the 1042 nm spin-singlet transition. The diamond is placed in an external optical cavity to enhance the absorption, and significant absorption is observed even at room temperature.

View Article and Find Full Text PDF

Ultrahigh-quality (Q) factor microresonators have a lot of applications in the photonics domain ranging from low-threshold nonlinear optics to integrated optical sensors. Glass-based whispering gallery mode (WGM) microresonators are easy to produce by melting techniques, however they suffer from surface contamination which limits their long-term quality factor to a few 10(8). Here we show that an optical gain provided by erbium ions can compensate for residual losses.

View Article and Find Full Text PDF

We start from a 2D photonic crystal nanocavity with moderate Q-factor and dynamically increase it by two order of magnitude by the joint action of coherent population oscillations and nonlinear refractive index.

View Article and Find Full Text PDF

We experimentally demonstrate a compact optical amplifier consisting of a rare-earth-doped whispering-gallery-mode microsphere coupled via a tapered fiber. A gain up to 20 dB is reported in an erbium-doped fluoride glass microsphere 135 μm in diameter. Below the amplification regime, the optical gain is used to compensate for unavoidable losses due to surface contamination or scattering.

View Article and Find Full Text PDF

Slow light induced by coherent population oscillations and cavity dispersive nonlinear response are combined achieving 2 orders of magnitude enhancement of the group delay and an equivalent decreasing of the spectral linewidth of a L3 two-dimensional photonic crystal nanocavity.

View Article and Find Full Text PDF

It is proposed that a side-coupled integrated spaced sequence of resonators (SCISSOR) be used to adapt Fresnel phase matching to the case of highly confining waveguides. As is the case for bulk media, this method of quasi-phase-matching (QPM) allows resonant or nonresonant QPM. This property can be used to control the spectral bandwidth of the phase-matching curve.

View Article and Find Full Text PDF

We numerically demonstrate the feasibility of constructing an all-optical pulse restorer by using a microresonator structure with Kerr nonlinearity. We obtain a clear nonlinear power transfer curve capable of improving the signal-to-noise ratio and reducing the bit error rate for digital signals. Since we take advantage of field enhancement at resonance, this integrated reshaper could be much smaller than other gates based on nonlinear fibers or waveguides.

View Article and Find Full Text PDF
Dispersive tristability in microring resonators.

Phys Rev E Stat Nonlin Soft Matter Phys

December 2005

Combining a transfer matrix analysis and slowly varying envelope approximation, we propose a simple method to describe steady states associated with dispersive multistability in coupled microring resonators. This approach allows us to consider nonlinear interactions between independent forward and backward propagative fields. We applied this simple formalism first to decrease the tristability intensity threshold in linearly coupled resonators and second to optically control the tristable behavior in a single microring resonator.

View Article and Find Full Text PDF

Diffraction losses in one-dimensional photonic crystal (PC) waveguides are the primary limitation on second-harmonic (SH) conversion efficiency. By using a finite difference time domain (FDTD) code taking into account second-order nonlinear polarization, we investigated these losses numerically, particularly at the SH wavelength. We propose an efficient SH conversion scheme in Al(x)Ga(1-x)As/air-etched waveguides.

View Article and Find Full Text PDF

By exploiting the unique properties of periodic stratified media we demonstrate simultaneously phase matching and enhancement of the optical field under second order nonlinear interaction. This leads to a second harmonic efficiency growth faster than the fifth power of the structure length, far better than the usual quadratic behavior associated with second order nonlinear effects.

View Article and Find Full Text PDF

Using the concept of an effective medium, we derive coupled mode equations for nonlinear quadratic interactions in photonic band gap structures of finite length. The resulting equations reveal the essential roles played by the density of modes and effective phase matching conditions necessary for the strong enhancement of the nonlinear response. Our predictions find confirmation in an experimental demonstration of significant enhancement of second harmonic generation near the photonic band edge.

View Article and Find Full Text PDF