We have previously suggested that the omega-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA) may in part function by enhancing membrane lipid phase separation into lipid rafts. Here we further tested for differences in the molecular interactions of an oleic (OA) versus DHA-containing phospholipid with sphingomyelin (SM) and cholesterol (CHOL) utilizing (2)H NMR spectroscopy, differential scanning calorimetry, atomic force microscopy, and detergent extractions in model bilayer membranes. (2)H NMR and DSC (differential scanning calorimetry) established the phase behavior of the OA-containing 1-[(2)H(31)]palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (16:0-18:1PE-d(31))/SM (1:1) and the DHA-containing 1-[(2)H(31)]palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine (16:0-22:6PE-d(31))/SM (1:1) in the absence and presence of equimolar CHOL.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2003
By one hypothesis, phospholipids containing unsaturated fatty acids may be involved in phase separation from the lipid raft molecules sphingomyelin (SM) and cholesterol (CHOL). We tested the effect of increasing the number of double bonds in the acyl chains of phosphatidylethanolamines (PEs) on phase separation from SM/CHOL. The detergent extraction method was employed on various homoacid and heteroacid PEs in mixed vesicles composed of PE/SM/CHOL (1:1:1mol).
View Article and Find Full Text PDFBiochim Biophys Acta
June 2001
It is postulated that biological membrane lipids are heterogeneously distributed into lipid microdomains. Recent evidence indicates that docosahexaenoic acid-containing phospholipids may be involved in biologically important lipid phase separations. Here we investigate the elastic and thermal properties of a model plasma membrane composed of egg sphingomyelin (SM), cholesterol and 1-stearoyl-2-docosahexaenoyl-sn-glycerophosphoethanolamine (SDPE).
View Article and Find Full Text PDFBiochim Biophys Acta
February 2000
The phase behavior of lipid mixtures containing 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (18:0, 22:6 PC) with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) was studied with bilayers using differential scanning calorimetry (DSC), and with monolayers monitoring pressure/area isotherms and surface elasticity, and lipid domain formation followed by epifluorescence microscopy. From DSC studies it is concluded that DPPC/18:0, 22:6 PC phase separates into DPPC-rich and 18:0, 22:6 PC-rich phases. In monolayers, phase separation is indicated by changes in pressure-area isotherms implying phase separation where 18:0, 22:6 PC is 'squeezed out' of the remaining DPPC monolayer.
View Article and Find Full Text PDFA major problem in defining biological membrane structure is deducing the nature and even existence of lipid microdomains. Lipid microdomains have been defined operationally as heterogeneities in the behavior of fluorescent membrane probes, particularly the fluorescence resonance energy transfer (FRET) probes 7-nitrobenz-2-oxa-1,3-diazol-4-yl-diacyl-sn-glycero-3-phosphoethan olamine (N-NBD-PE) and (N-lissamine rhodamine B sulfonyl)-diacyl-snglycero-3-phosphoethanolamine (N-Rh-PE). Here we test a variety of N-NBD-PEs and N-Rh-PEs containing: (a) undefined acyl chains, (b) liquid crystalline- and gel-state acyl chains, and (c) defined acyl chains matching those of phase separated membrane lipids.
View Article and Find Full Text PDFThe important omega-3 fatty acid docosahexaenoic acid (DHA) is present at high concentration in some membranes that also contain the unusual sterol cholesterol sulfate (CS). The association between these lipids and their effect on membrane structure is presented here. Differential scanning calorimetry (DSC), MC540 fluorescence, erythritol permeability, pressure/area isotherms on lipid monolayers and molecular modeling are used to compare the effect of CS and cholesterol on model phospholipid membranes.
View Article and Find Full Text PDFThe techniques of differential scanning calorimetry, fluorescence of merocyanine 540, fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene, proton permeability, and lipid peroxidation are used to compare the perturbations of cholesterol and alpha-tocopherol on lipid bilayer membranes composed of different phosphatidylcholines containing stearic acid in the sn-1 position and an unsaturated fatty acid (either oleic, alpha-linolenic, gamma-linolenic, or docosahexaenoic acid) in the sn-2 position. It is concluded that the structural roles of cholesterol and alpha-tocopherol may be similar with membranes composed of some phosphatidylcholines but are clearly different with membranes composed of other related phosphatidylcholines. alpha-Tocopherol exerts a much larger effect than cholesterol on membranes rich in polyunsaturated fatty acids that have their initial double bond before the delta 9 position.
View Article and Find Full Text PDFCholesterol is demonstrated to condense phosphatidylcholine (PC) monolayers and bilayers containing stearic acid in the sn-1 position and alpha-linolenic acid in the sn-2 position (18:0, alpha-18:3 PC) but has no effect when gamma-linolenic acid occupies the sn-2 position (18:0,gamma-18:3 PC). Cholesterol-induced condensation is measured by area/molecule determinations made on monolayers using a Langmuir trough, while condensation in bilayers is followed by the fluorescent dyes merocyanine (MC540) and dansyllysine. Permeability to erythritol is also demonstrated to be diminished by cholesterol for the condensable 18:0,alpha-18:3 PC bilayer membranes but not the 18:0,gamma-18:3 PC membranes.
View Article and Find Full Text PDFThe fluorescent probe merocyanine (MC540) reports qualitatively on several membrane events. Here we demonstrate that MC540 fluorescence can quantify the degree of coexisting liquid-crystalline and gel states in mixed monotectic phosphatidylcholine (PC) bilayers. The probe exhibits disparate fluorescence wavelength maximas and and intensities when incorporated into liquid-crystalline and gel state membranes.
View Article and Find Full Text PDF