Publications by authors named "Dulce-Nombre Rodriguez-Navarro"

Identification of elite nitrogen-fixing rhizobia strains is a continuous and never ending effort, since new legume species can be cultivated in different agro systems or are introduced into new areas. This current study reports on the taxonomic affiliation and symbiotic proficiency of nine strains of Trifolium-nodulating rhizobia isolated from different pasture areas in Spain, as well as three Rhizobium leguminosarum bv. trifolii reference strains, on eleven Trifolium species.

View Article and Find Full Text PDF

Biodiversity studies of native Mesorhizobium spp. strains able to nodulate the annual herbaceous legume Biserrula pelecinus L. in soils from Southwest Spain have been carried out.

View Article and Find Full Text PDF

Sinorhizobium fredii HH103 Rif , a broad-host-range rhizobial strain, forms ineffective nodules with Lotus japonicus but induces nitrogen-fixing nodules in Lotus burttii roots that are infected by intercellular entry. Here we show that HH103 Rif nolR or nodD2 mutants gain the ability to induce infection thread formation and to form nitrogen-fixing nodules in L. japonicus Gifu.

View Article and Find Full Text PDF

indigenous populations are prevalent in provinces of Central China whereas species (, , , and others) are more abundant in northern and southern provinces. The symbiotic properties of different soybean rhizobia have been investigated with 40 different wild soybean () accessions from China, Japan, Russia, and South Korea. Bradyrhizobial strains nodulated all the wild soybeans tested, albeit efficiency of nitrogen fixation varied considerably among accessions.

View Article and Find Full Text PDF

Sinorhizobium fredii HH103-Rif, a broad host range rhizobial strain, induces nitrogen-fixing nodules in Lotus burttii but ineffective nodules in L. japonicus. Confocal microscopy studies showed that Mesorhizobium loti MAFF303099 and S.

View Article and Find Full Text PDF

Model legumes such as Lotus japonicus have contributed significantly to the understanding of symbiotic nitrogen fixation. This insight is mainly a result of forward genetic screens followed by map-based cloning to identify causal alleles. The L.

View Article and Find Full Text PDF

We have investigated in Sinorhizobium fredii HH103-1 (=HH103 Str(r)) the influence of the nolR gene on the production of three different bacterial symbiotic signals: Nod factors, signal responsive (SR) proteins, and exopolysaccharide (EPS). The presence of multiple copies of nolR (in plasmid pMUS675) repressed the transcription of all the flavonoid-inducible genes analyzed: nodA, nodD1, nolO, nolX, noeL, rhcJ, hesB, and y4pF. Inactivation of nolR (mutant SVQ517) or its overexpression (presence of pMUS675) altered the amount of Nod factors detected.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiont5pemola649rb6mrban39ul4rhht5lge): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once