Publications by authors named "Dulce C Arango"

We describe a high-throughput screening (HTS) assay for transglutaminase (TG) enzyme activity using plasmonic fluorescent nanocomposites. We used TG to covalently crosslink 500 μM solution of 5'-biotinamidopentylamine (BP) to N,N'-dimethylcasein (DMC) which was adsorbed onto 384-well microplates. We then bound 0.

View Article and Find Full Text PDF

Glucose oxidase (GOx) is an enzymatic workhorse used in the food and wine industries to combat microbial contamination, to produce wines with lowered alcohol content, as the recognition element in amperometric glucose sensors, and as an anodic catalyst in biofuel cells. It is naturally produced by several species of fungi, and genetic variants are known to differ considerably in both stability and activity. Two of the more widely studied glucose oxidases come from the species Aspergillus niger (A.

View Article and Find Full Text PDF

The development of a microneedle-based biosensor array for multiplexed in situ detection of exercise-induced metabolic acidosis, tumor microenvironment, and other variations in tissue chemistry is described. Simultaneous and selective amperometric detection of pH, glucose, and lactate over a range of physiologically relevant concentrations in complex media is demonstrated. Furthermore, materials modified with a cell-resistant (Lipidure(®)) coating were shown to inhibit macrophage adhesion; no signs of coating delamination were noted over a 48-h period.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers combined hyperspectral confocal microscopy and multivariate curve resolution to study how antimicrobial peptides (AMPs) interact with biological membranes and cells.
  • They specifically analyzed buforin II, magainin II, and arenicin in both nanoporous silica bilayers and living E. coli, revealing new insights into the biophysics of these interactions.
  • Key findings include a novel fluorescence method for comparing model systems, detailed measurement of antimicrobial agent dynamics, and enhanced understanding of how membrane penetration influences AMP action.
View Article and Find Full Text PDF

A multifunctional thin film surface capable of immobilizing two diverse molecules on a single gold electrode was prepared by consecutive electrodeposition of nitrophenyl and phenylboronic acid pinacol ester (PBA-PE) diazonium salts. Activation of the stacked film toward binding platinum nanoparticles (PtNPs) and yeast cells occurred via chemical deprotection of the pinacol ester followed by electroreduction of nitro to amino groups. FTIR spectral analysis was used to study and verify film composition at each stage of preparation.

View Article and Find Full Text PDF

We describe a metal transport system for investigating the interfacial interactions between the anionic surface charge of a gram-negative bacterium (Escherichia coli) and a trivalent cationic metal, Tb3+. We believe this is the first description of the uptake kinetics, sub- and intracellular distribution, and temporal fate of Tb3+ ion in E. coli.

View Article and Find Full Text PDF

The direct electrically addressable deposition of diazonium-modified antibodies is examined for electrochemical immunosensing applications. The immobilized antibodies can be detected by the use of electroactive enzyme tags and nanoparticle-gold labeling. Control over antibody functionalization density and minimal spontaneous grafting of diazonium-antibody adducts is shown.

View Article and Find Full Text PDF

A simple one-step procedure is introduced for the preparation of diazonium-enzyme adducts. The direct electrically addressable deposition of diazonium-modified enzymes is examined for electrochemical sensor applications. The deposition of diazonium-horseradish peroxidase leads to the direct electron transfer between the enzyme and electrode exhibiting a heterogeneous rate constant, ks, of 10.

View Article and Find Full Text PDF