In this study, five different in vitro assays, which together recapitulate much of kidney development, were used to examine the role of the Rho-associated protein serine/threonine kinase (ROCK) in events central to ureteric bud (UB) and metanephric mesenchyme (MM) morphogenensis, in isolation and together. ROCK activity was found to be critical for (1) cell proliferation, growth, and development of the whole embryonic kidney in organ culture, (2) tip and stalk formation in cultures of isolated UBs, and (3) migration of MM cells (in a novel MM migration assay) during their condensation at UB tips (in a UB/MM recombination assay). Together, the data indicate selective involvement of Rho/ROCK in distinct morphogenetic processes necessary for kidney development and that the coordination of these events by Rho/ROCK provides a potential mechanism to regulate overall branching patterns, nephron formation, and thus, kidney architecture.
View Article and Find Full Text PDFSix1-/- mice were found to have apparently normal ureters in the absence of a kidney, suggesting that the growth and development of the unbranched ureter is largely independent of the more proximal portions of the UB which differentiates into the highly branched renal collecting system. Culture of isolated urinary tracts (from normal and mutant mice) on Transwell filters was employed to study the morphogenesis of this portion of the urogenital system. Examination of the ureters revealed the presence of a multi-cell layered tubule with a lumen lined by cells expressing uroplakin (a protein exclusively expressed in the epithelium of the lower urinary tract).
View Article and Find Full Text PDFDevelopment of metanephric kidney begins with ureteric bud outgrowth from the Wolffian duct (WD). GDNF is believed to be a crucial positive signal in the budding process, but the negative regulation of this process remains unclear. Here, we examined the role of activin A, a member of TGF-beta family, in bud formation using an in vitro WD culture system.
View Article and Find Full Text PDFThe "classical" organic anion secretory pathway of the renal proximal tubule is critical for the renal excretion of the prototypic organic anion, para-aminohippurate, as well as of a large number of commonly prescribed drugs among other significant substrates. Organic anion transporter 1 (OAT1), originally identified as NKT (Lopez-Nieto, C. E.
View Article and Find Full Text PDFIn search of guiding principles involved in the branching of epithelial tubes in the developing kidney, we analyzed branching of the ureteric bud (UB) in whole kidney culture as well as in isolated UB culture independent of mesenchyme but in the presence of mesenchymally derived soluble factors. Microinjection of the UB lumen (both in the isolated UB and in the whole kidney) with fluorescently labeled dextran sulfate demonstrated that branching occurred via smooth tubular epithelial outpouches with a lumen continuous with that of the original structure. Epithelial cells within these outpouches cells were wedge-shaped with actin, myosin-2 and ezrin localized to the luminal side, raising the possibility of a "purse-string" mechanism.
View Article and Find Full Text PDF