Reducing the particle size of materials is an efficient and reliable tool for improving the bioavailability of a gene or drug delivery system. In fact, nanotechnology helps in overcoming the limitations of size and can change the outlook of the world regarding science. However, a potential harmful effect of nanomaterial on workers manufacturing nanoparticles is expected in the workplace and the lack of information regarding body distribution of inhaled nanoparticles may pose serious problem.
View Article and Find Full Text PDFPurpose: The purpose of this study was to investigate the proton metabolic differences of the right parietal cortex with experimental brain contusions of ICR mouse induced by fluid percussion injury (FPI) compared to normal controls and to test the possibility that 1H magnetic resonance spectroscopy (MRS) findings could provide neuropathologic criteria in the diagnosis and monitoring of traumatic brain contusions.
Materials And Methods: A homogeneous group of 20 ICR male mice was used for MRI and in vivo 1H MRS. Using image-guided, water-suppressed in vivo 1H MRS with a 4.