Publications by authors named "Dujin Zhou"

Many estrogen receptor alpha (ERα)-positive breast cancers initially respond to aromatase inhibitors (AIs), but eventually acquire resistance. Here, we report that serum- and glucocorticoid-inducible kinase 3 (SGK3), a kinase transcriptionally regulated by ERα in breast cancer, sustains ERα signaling and drives acquired AI resistance. SGK3 is up-regulated and essential for endoplasmic reticulum (EnR) homeostasis through preserving sarcoplasmic/EnR calcium ATPase 2b (SERCA2b) function in AI-resistant cells.

View Article and Find Full Text PDF

Objectives: Aromatase deficiency is a rare disorder resulting in estrogen insufficiency in humans. It has been reported in remarkably few men with loss-of-function mutations in the CYP19A1 gene encoding the aromatase, a cytochrome P450 enzyme that plays a crucial role in the biosynthesis of estrogens from androgens. We investigated a non-consanguineous family including an adult man with clinical features of aromatase deficiency, and studied the effects of estrogen replacement in the man.

View Article and Find Full Text PDF

Both androgen and phosphatidylinositol 3-kinase (PI3K) signaling are critical for cell proliferation of androgen receptor (AR)-positive prostate cancer cells, but the underlying mechanisms are still not fully understood. Here we report that serum- and glucocorticoid-inducible kinase 3 (SGK3), a Ser/Thr kinase functioning downstream of PI3K, is an AR transcriptional target and promotes prostate cancer cell proliferation. SGK3 expression is up-regulated by androgen DHT via AR.

View Article and Find Full Text PDF

Endocrine disrupting chemicals (EDCs) interfere with the biosynthesis, metabolism, and functions of steroid hormones, including estrogens and androgens. Aromatase enzyme converts androgen to estrogen. Thus, EDCs against aromatase significantly impact estrogen- and/or androgen-dependent functions, including the development of breast cancer.

View Article and Find Full Text PDF

Serum- and glucocorticoid-inducible kinase 3 (SGK3) mediates a variety of cellular processes including membrane transport, cell proliferation, and survival, and it has been implicated in Akt-independent signaling downstream of oncogenic PIK3CA mutations (activating mutations in the α catalytic subunit of PI3K) in human cancers. However, the regulation of SGK3 is poorly understood. Here we report that SGK3 stability and kinase activation are regulated by the Hsp90-Cdc37 chaperone complex.

View Article and Find Full Text PDF

Serum- and glucocorticoid-inducible kinase 3 (SGK3) is a protein kinase of the AGC family of protein kinase A, protein kinase G, and protein kinase C and functions downstream of phosphatidylinositol 3-kinase (PI3K). Recent study revealed that SGK3 plays a pivotal role in Akt/protein kinase B independent signaling downstream of oncogenic PI3KCA mutations in breast cancer. Here we report that SGK3 is an estrogen receptor (ER) transcriptional target and promotes estrogen-mediated cell survival of ER-positive breast cancer cells.

View Article and Find Full Text PDF

PNRC (proline-rich nuclear receptor coregulatory protein) was primarily identified as a coactivator of nuclear receptors (NRs) by our laboratory, which enhances NR-mediated transcription by RNA polymerase II. Recent study has shown that PNRC also stimulates RNA polymerase III-dependent transcription through interaction with the subunit RPC39 of RNA polymerase III. Here, we report that PNRC accumulates in the nucleolus and its depletion by small interfering RNA (siRNA) impairs pre-rRNA transcription by RNA polymerase I.

View Article and Find Full Text PDF

Purpose: The production of E2 is paramount for the growth of estrogen receptor-positive breast cancer. Various strategies have been used, including the use of enzyme inhibitors against either aromatase (AROM) or steroid sulfatase (STS), in an attempt to ablate E2 levels. Both these enzymes play a critical role in the formation of estrogenic steroids and their inhibitors are now showing success in the clinic.

View Article and Find Full Text PDF

Nuclear receptor (NR) dependent transcriptional action requires recruitment of diverse factors characterized as coregulators. PNRC (proline-rich nuclear receptor coregulatory protein) is a member of coregulators that are capable of potentiating the transcriptional activity of NRs. Here we identified three human PNRC splicing variants designated PNRC1c, PNRC1d and PNRC1f.

View Article and Find Full Text PDF

Third generation aromatase inhibitors (AI) have shown good clinical efficacy in comparison to the anti-estrogen tamoxifen. The steroidal AI, exemestane (EXE) has previously been shown to act as an androgen, but this report demonstrates the estrogen-like activity of EXE. Based on genome-wide microarray analysis, high correlation was seen between EXE-Only (EXE O, hormone-free) and hormone-containing AI-resistant lines.

View Article and Find Full Text PDF

We have previously generated a breast cancer cell line, MCF-7aro, which over-expresses aromatase and is also ER positive. Recently, this MCF-7aro cell line was stably transfected with a promoter reporter plasmid, pGL3-Luc, containing three repeats of estrogen responsive element (ERE). Experiments using MCF-7aro/ERE have demonstrated that it is a novel, non-radioactive screening system for aromatase inhibitors (AIs), ERalpha ligands and ERRalpha ligands.

View Article and Find Full Text PDF

ERRalpha (estrogen receptor-related receptor alpha) is a member of the nuclear receptor superfamily. To further our understanding of the detailed molecular mechanism of transcriptional regulation by ERRalpha, we searched for ERRalpha-interacting proteins using a yeast two-hybrid system by screening a human mammary gland cDNA expression library with the ligand-binding domain (LBD) of ERRalpha as the "bait". Fast skeletal muscle troponin I (TNNI2), along with several known nuclear receptor co-activators, were isolated.

View Article and Find Full Text PDF

PNRC (proline-rich nuclear receptor co-activator) was previously identified using bovine SF-1 (steroidogenic factor 1) as the bait in a yeast two-hybrid screening of a human mammary gland cDNA expression library. PNRC has been demonstrated to be a novel co-activator for multiple nuclear receptors. To understand the molecular mechanisms that regulate the expression of human PNRC gene, in this study, potential transcriptional start site was determined by 5' RACE analysis.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are a class of recently discovered noncoding RNA genes that post-transcriptionally regulate gene expression. It is becoming clear that miRNAs play an important role in the regulation of gene translation during development. However, in mammals, expression data are principally based on whole tissue analysis and are still very incomplete.

View Article and Find Full Text PDF

In situ estrogen synthesis is implicated in tumor cell proliferation through autocrine or paracrine mechanisms especially in postmenopausal women. Several recent studies demonstrated activity of aromatase, an enzyme that plays a critical role in estrogen synthesis in breast tumors. Proline-, glutamic acid-, and leucine-rich protein-1 (PELP1/MNAR) is an estrogen receptor (ER) coregulator, and its expression is deregulated in breast tumors.

View Article and Find Full Text PDF

PNRC2 was identified in our laboratory as a general cofactor for nuclear receptors. To better characterize the physiological function of PNRC2, we used gene-targeting technology to generate PNRC2-null mice (PNRC2(-/-) mice). These PNRC2(-/-) mice are viable and fertile.

View Article and Find Full Text PDF

Background: PNRC transcriptionally regulates a wide range of RNA polymerase (pol) II-transcribed genes by functioning as a nuclear receptor coactivator. To search for additional PNRC-interacting proteins other than nuclear receptors, a PNRC fragment was used as bait in a yeast two-hybrid screening of a human mammary gland cDNA expression library.

Results: RNA pol III/RPC39 fragments were repeatedly identified as PNRC-interacting partners in two independent screenings.

View Article and Find Full Text PDF

The farnesoid X receptor (FXR) is a bile acid (BA)-activated nuclear receptor that plays a major role in the regulation of BA and lipid metabolism. Although modulation of FXR expression has been reported, the mechanisms underlying the regulation of human FXR are yet unclear. Functional assays showed that the -150/+29 nucleotides region from the first nucleotide at the Exon I is the minimal promoter of the human FXR gene by the technique of serial deletion and point mutants of the 5'-flanking region.

View Article and Find Full Text PDF

Aromatase converts androgens to aromatic estrogens. Aromatase inhibitors have been used as first-line drugs in the treatment of hormone-dependent breast cancer. Structural basis of the aromatization reaction and drug recognition by aromatase has remained elusive because of its unknown three-dimensional structure.

View Article and Find Full Text PDF

PNRC and PNRC2 are members of a new family of nuclear receptor coactivators. We systematically determined the molecular basis and the structure/function relationship for the PNRC-ERalpha interaction. PNRC was found to interact with ERalpha mainly through its C-terminus region, amino acids 270-327, and an SH3-binding motif within this region was shown to be essential for PNRC to interact with and function as coactivator of ERalpha.

View Article and Find Full Text PDF

PNRC2 (Proline-rich Nuclear Receptor Coactivator 2) was previously identified through its interaction with SF1 (steroidogenic factor 1) and has been demonstrated to be a novel coactivator for multiple nuclear receptors. In this study, PNRC2 was found to be widely expressed in mouse tissues with a strong expression in lung, spleen, ovary, thymus, and colon. Alignment of mouse genomic sequence with mouse cDNA sequence (BC006598), using mouse genome browser, defines that PNRC2 gene, located on chromosome 4, contains 3 exons: 166 bp-exon I, 205 bp-exon II, and 1526 bp-exon III.

View Article and Find Full Text PDF

By performing primer-specific RT-PCR analyses, three laboratories including ours have found that exons I.3 and PII are the two major exon Is present in aromatase mRNAs isolated from breast tumors. These results suggest that promoters I.

View Article and Find Full Text PDF

Estrogen stimulates the proliferation of estrogen receptor (ER)-positive breast cancer cells. Aromatase is the enzyme responsible for the conversion of androgens into estrogens, and synthetic aromatase inhibitors such as letrozole, anastrozole, and exemestane have proven to be effective endocrine regimens for ER-positive breast cancer. In a recent study, we have found that 4-benzyl-3-(4'-chlorophenyl)-7-methoxycoumarin is a potent competitive inhibitor of aromatase with respect to the androgen substrate.

View Article and Find Full Text PDF

It has been demonstrated that proline-rich nuclear receptor coregulatory protein (PNRC) is a nuclear receptor coactivator that interacts with nuclear receptors through an SH3-binding motif located in its C-terminus. In the present report, a physical interaction between PNRC and Grb2 (an adapter protein involved in growth factor/Ras-mediated pathways) has been demonstrated using the GST pull-down assay, the yeast two-hybrid assay, as well as by coimmunoprecipitation. Cotransfection and fluorescence imaging have also confirmed the colocalization of PNRC and Grb2 in mammalian cells.

View Article and Find Full Text PDF

The utilization of computer modeling, site-directed mutagenesis, inhibition kinetic analysis and reaction metabolite analysis allows us to better understand the structure-function relationship between aromatase and its inhibitors. Our results have helped in determining how steroidal and nonsteriodal aromatase inhibitors bind to the active site of the enzyme. This information has also aided in the understanding of the reaction mechanism of aromatase.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionl11sjc8dmkfav4t1q65113rptn61r0ho): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once