Publications by authors named "Duis S"

Spinal cord injury disrupts the communication between the brain and the spinal circuits that orchestrate movement. To bypass the lesion, brain-computer interfaces have directly linked cortical activity to electrical stimulation of muscles, and have thus restored grasping abilities after hand paralysis. Theoretically, this strategy could also restore control over leg muscle activity for walking.

View Article and Find Full Text PDF

Unlabelled: Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral context. To investigate this possibility, we recorded whole-body kinematics, muscle synergies, and hindlimb motor cortex modulation in freely moving rats performing a range of natural locomotor procedures.

View Article and Find Full Text PDF

Electrical neuromodulation of lumbar segments improves motor control after spinal cord injury in animal models and humans. However, the physiological principles underlying the effect of this intervention remain poorly understood, which has limited the therapeutic approach to continuous stimulation applied to restricted spinal cord locations. Here we developed stimulation protocols that reproduce the natural dynamics of motoneuron activation during locomotion.

View Article and Find Full Text PDF

The mechanical mismatch between soft neural tissues and stiff neural implants hinders the long-term performance of implantable neuroprostheses. Here, we designed and fabricated soft neural implants with the shape and elasticity of dura mater, the protective membrane of the brain and spinal cord. The electronic dura mater, which we call e-dura, embeds interconnects, electrodes, and chemotrodes that sustain millions of mechanical stretch cycles, electrical stimulation pulses, and chemical injections.

View Article and Find Full Text PDF

Half of human spinal cord injuries lead to chronic paralysis. Here, we introduce an electrochemical neuroprosthesis and a robotic postural interface designed to encourage supraspinally mediated movements in rats with paralyzing lesions. Despite the interruption of direct supraspinal pathways, the cortex regained the capacity to transform contextual information into task-specific commands to execute refined locomotion.

View Article and Find Full Text PDF

Background: Peritoneal function tests are performed in peritoneal dialysis (PD) patients to characterize peritoneal membrane status. A low pH/high glucose degradation product (GDP) dialysis solution is used as the test solution. The objective of the present study was to compare a 3.

View Article and Find Full Text PDF

We previously demonstrated that the tetraspanin protein CD81 is up-regulated by astrocytes and microglia after traumatic spinal cord injury in rats and that CD81 is involved in adhesion and proliferation of cultured astrocytes and microglia. Since these reactive glial cells contribute to secondary damage and glial scar formation, we studied the effect of local administration of an anti-CD81 antibody in experimental spinal cord injury. Adult rats were subjected to a moderate spinal cord contusion injury and treated for 2 weeks with different doses of the anti-CD81 antibody AMP1 (0.

View Article and Find Full Text PDF

Voluntary locomotor training as induced by enriched housing of rats stimulates recovery of locomotion after spinal cord injury (SCI). Generally it is thought that spinal neural networks of motor- and interneurons located in the ventral and intermediate laminae within the lumbar intumescence of the spinal cord, also referred to as central pattern generators (CPGs), are the 'producers of locomotion' and play a pivotal role in the amelioration of locomotor deficits after SCI. It has been suggested that locomotor training provides locomotor-specific sensory feedback into the CPGs, which stimulates remodeling of central nervous system pathways, including motor systems.

View Article and Find Full Text PDF

Traumatic injury of the central nervous system results in formation of a collagenous basement membrane-rich fibrous scar in the lesion centre. Due to accumulation of numerous axon-growth inhibitory molecules the lesion scar is considered a major impediment for axon regeneration. Following transection of the dorsal corticospinal tract (CST) at thoracic level 8 in adult rats, transient suppression of collagenous scarring in the lesion zone by local application of a potent iron chelator and cyclic adenosine monophosphate resulted in the delay of fibrous scarring.

View Article and Find Full Text PDF

Diabetes mellitus can lead to functional and structural deficits in both the peripheral and central nervous system. The pathogenesis of these deficits is multifactorial, probably involving, among others, microvascular dysfunction and oxidative stress. The present study examined the effects of 12 weeks of treatment with a conjugate of the essential fatty acid gamma-linolenic acid and the anti-oxidant alpha-lipoic acid (GLA-LA) on functional deficits in the peripheral and central nervous system in streptozotocin-diabetic rats.

View Article and Find Full Text PDF

Aims/hypothesis: Diabetes mellitus leads to functional and structural changes in the brain which appear to be most pronounced in the elderly. Because the pathogenesis of brain ageing and that of diabetic complications show close analogies, it is hypothesized that the effects of diabetes and ageing on the brain interact. Our study examined the effects of diabetes and ageing on learning and hippocampal synaptic plasticity in rats.

View Article and Find Full Text PDF

Melanocortins, peptides related to alpha-melanocortin-stimulating hormone (alpha MSH) and adrenocorticotropic hormone (ACTH), are known to improve axonal regeneration following peripheral nerve injury and stimulate neurite outgrowth from central nervous system (CNS) neurons both in vitro and in vivo. The neurite outgrowth promoting capacity of alpha MSH has prompted us to investigate the effects of intrathecal application of alpha MSH on functional and electrophysiological recovery in a well-characterized model of spinal cord contusion injury. Different doses of alpha MSH were applied via osmotic minipumps into the cisterna magna for 10 days, thereby delivering the peptide directly into the CNS.

View Article and Find Full Text PDF

Modality differences for short-term (STM) and long-term memory (LTM) were investigated. Sixty-eight subjects participated in one of four conditions: Auditory STM, Verbal STM, Auditory LTM, and Verbal LTM. Analysis of the number of words correctly recalled showed a significant interaction between modality and store.

View Article and Find Full Text PDF