Spintronics is concerned with replacing charge current with current of spin, the electron's intrinsic angular momentum. In magnetic insulators, spin currents are carried by magnons, the quanta of spin-wave excitations on top of the magnetically ordered state. Magnon spin currents are especially promising for information technology due to their low intrinsic damping, non-reciprocal transport, micrometer wavelengths at microwave frequencies, and strong interactions that enable signal transduction.
View Article and Find Full Text PDFSpin dynamics is usually described as massless or, more precisely, as free of inertia. Recent experiments, however, found direct evidence for inertial spin dynamics. In turn, it is necessary to rethink the basics of spin dynamics.
View Article and Find Full Text PDFTopological bosonic excitations must, in contrast to their fermionic counterparts, appear at finite energies. This is a key challenge for magnons, as it prevents straightforward excitation and detection of topologically protected magnonic edge states and their use in magnonic devices. In this Letter, we show that in a nonequilibrium state, in which the magnetization is pointing against the external magnetic field, the topologically protected chiral edge states in a magnon Chern insulator can be lowered to zero frequency, making them directly accessible by existing experimental techniques.
View Article and Find Full Text PDFJ Phys Condens Matter
November 2022
A 'toy model'-aimed at capturing the essential physics-is presented that jointly describes spin-polarized hot electron transport and spin pumping driven by local heating. These two processes both contribute to spin-current generation in laser-excited magnetic heterostructures. The model is used to compare the two contributions directly.
View Article and Find Full Text PDFDzyaloshinskii-Moriya interaction in magnets, which is usually derived from inversion symmetry breaking at interfaces or in noncentrosymmetric crystals, plays a vital role in chiral spintronics. Here we report that an emergent Dzyaloshinskii-Moriya interaction can be achieved in a centrosymmetric material, La_{0.67}Sr_{0.
View Article and Find Full Text PDFAn optical frequency comb consists of a set of discrete and equally spaced frequencies and has found wide applications in the synthesis over a broad range of spectral frequencies of electromagnetic waves and precise optical frequency metrology. Despite the analogies between magnons and photons in many aspects, the analog of an optical frequency comb in magnonic systems has not been reported. Here, we theoretically study the magnon-skyrmion interaction and find that a magnonic frequency comb (MFC) can be generated above a threshold driving amplitude, where the nonlinear scattering process involving three magnons prevails.
View Article and Find Full Text PDFTopologically protected magnetic structures provide a robust platform for low power consumption devices for computation and data storage. Examples of these structures are skyrmions, chiral domain walls, and spin spirals. Here, we use scanning electron microscopy with polarization analysis to unveil the presence of chiral counterclockwise Néel spin spirals at the surface of a bulk van der Waals ferromagnet FeGeTe (FGT) at zero magnetic field.
View Article and Find Full Text PDFChiral magnetism, wherein there is a preferred sense of rotation of the magnetization, determines the chiral nature of magnetic textures such as skyrmions, domain walls, or spin spirals. Current research focuses on identifying and controlling the interactions that define the magnetic chirality in thin film multilayers. The influence of the interfacial Dzyaloshinskii-Moriya interaction (IDMI) and, recently, the dipolar interactions have been reported.
View Article and Find Full Text PDFWe investigate phonon spin transport in an insulating ferromagnet-nonmagnet-ferromagnet heterostructure. We show that the magnetoelastic interaction between the spins and the phonons leads to nonlocal spin transfer between the magnets. This transfer is mediated by a local phonon spin current and accompanied by a phonon spin accumulation.
View Article and Find Full Text PDFThe compensated magnetic order and characteristic terahertz frequencies of antiferromagnetic materials make them promising candidates to develop a new class of robust, ultrafast spintronic devices. The manipulation of antiferromagnetic spin-waves in thin films is anticipated to lead to new exotic phenomena such as spin-superfluidity, requiring an efficient propagation of spin-waves in thin films. However, the reported decay length in thin films has so far been limited to a few nanometers.
View Article and Find Full Text PDFElectrons and holes residing on the opposing sides of an insulating barrier and experiencing an attractive Coulomb interaction can spontaneously form a coherent state known as an indirect exciton condensate. We study a trilayer system where the barrier is an antiferromagnetic insulator. The electrons and holes here additionally interact via interfacial coupling to the antiferromagnetic magnons.
View Article and Find Full Text PDFThe stabilization of chiral magnetic domain walls and skyrmions has been attributed to the actively investigated Dzyaloshinskii-Moriya interaction. Recently, however, predictions were made that suggest dipolar interactions can also stabilize chiral domain walls and skyrmions, but direct experimental evidence has been lacking. Here we show that dipolar interactions can indeed stabilize chiral domain walls by directly imaging the magnetic domain walls using scanning electron microscopy with polarization analysis in archetype Pt/CoB/Ir thin film multilayers.
View Article and Find Full Text PDFMotivated by the important role of the normalized second-order coherence function, often called g^{(2)}, in the field of quantum optics, we propose a method to determine magnon coherence in solid-state devices. Namely, we show that the cross-correlations of pure spin currents injected by a ferromagnet into two metal leads, normalized by their dc value, replicate the behavior of g^{(2)} when magnons are driven far from equilibrium. We consider two scenarios: driving by ferromagnetic resonance, which leads to the coherent occupation of a single mode, and driving by heating of the magnons, which leads to an excess of incoherent magnons.
View Article and Find Full Text PDFSpin waves may constitute key components of low-power spintronic devices. Antiferromagnetic-type spin waves are innately high-speed, stable and dual-polarized. So far, it has remained challenging to excite and manipulate antiferromagnetic-type propagating spin waves.
View Article and Find Full Text PDFWe show that an inhomogeneity in the spin-transfer torques in a metallic ferromagnet under suitable conditions strongly amplifies incoming spin waves. Moreover, at nonzero temperatures the incoming thermally occupied spin waves will be amplified such that the region with inhomogeneous spin-transfer torques emits spin waves spontaneously, thus constituting a spin-wave laser. We determine the spin-wave scattering amplitudes for a simplified model and setup, and show under which conditions the amplification and lasing occurs.
View Article and Find Full Text PDFSpintronics relies on the transport of spins, the intrinsic angular momentum of electrons, as an alternative to the transport of electron charge as in conventional electronics. The long-term goal of spintronics research is to develop spin-based, low-dissipation computing-technology devices. Recently, long-distance transport of a spin current was demonstrated across ferromagnetic insulators.
View Article and Find Full Text PDFDzyaloshinskii-Moriya interaction (DMI) is investigated in a 2D ferromagnet (FM) with spin-orbit interaction of Rashba type at finite temperatures. The FM is described in the continuum limit by an effective s-d model with arbitrary dependence of spin-orbit coupling (SOC) and kinetic energy of itinerant electrons on the absolute value of momentum. In the limit of weak SOC, we derive a general expression for the DMI constant D from a microscopic analysis of the electronic grand potential.
View Article and Find Full Text PDFSpintronic and nanomagnetic devices often derive their functionality from layers of different materials and the interfaces between them. This is especially true for synthetic antiferromagnets - two or more ferromagnetic layers that are separated by metallic spacers or tunnel barriers and which have antiparallel magnetizations. Here, we discuss the new opportunities that arise from synthetic antiferromagnets, as compared to crystal antiferromagnets or ferromagnets.
View Article and Find Full Text PDFIn antiferromagnetic (AFM) thin films, broken inversion symmetry or coupling to adjacent heavy metals can induce Dzyaloshinskii-Moriya (DM) interactions. Knowledge of the DM parameters is essential for understanding and designing exotic spin structures, such as hedgehog Skyrmions and chiral Néel walls, which are attractive for use in novel information storage technologies. We introduce a framework for computing the DM interaction in two-dimensional Rashba antiferromagnets.
View Article and Find Full Text PDFMotivated by recent experimental work, we consider spin transport between a normal metal and a gapped quantum paramagnet. We model the latter as the magnonic Mott-insulating phase of an easy-plane ferromagnetic insulator. We evaluate the spin current mediated by the interface exchange coupling between the ferromagnet and the adjacent normal metal.
View Article and Find Full Text PDFEfficient manipulation of magnon spin transport is crucial for developing magnon-based spintronic devices. In this Letter, we provide proof of principle of a method for modulating the diffusive transport of thermal magnons in an yttrium iron garnet channel between injector and detector contacts. The magnon spin conductance of the channel is altered by increasing or decreasing the magnon chemical potential via spin Hall injection of magnons by a third modulator electrode.
View Article and Find Full Text PDFWe develop a theory for spin transport and magnetization dynamics in a quantum dot spin valve, i.e., two magnetic reservoirs coupled to a quantum dot.
View Article and Find Full Text PDFWe investigate spin transport by thermally excited spin waves in an antiferromagnetic insulator. Starting from a stochastic Landau-Lifshitz-Gilbert phenomenology, we obtain the out-of-equilibrium spin-wave properties. In linear response to spin biasing and a temperature gradient, we compute the spin transport through a normal-metal-antiferromagnet-normal-metal heterostructure.
View Article and Find Full Text PDFWe show that the interaction between the spin-polarized current and the magnetization dynamics can be used to implement black-hole and white-hole horizons for magnons-the quanta of oscillations in the magnetization direction in magnets. We consider three different systems: easy-plane ferromagnetic metals, isotropic antiferromagnetic metals, and easy-plane magnetic insulators. Based on available experimental data, we estimate that the Hawking temperature can be as large as 1 K.
View Article and Find Full Text PDF