Publications by authors named "Dui Qin"

Submicron ultrasound contrast agents hold great potential to extend the bubble-mediated theranostics beyond the vasculature, but their acoustic response and the interaction effects between them remain poorly understood. This study set out to numerically examine the interaction effects on the subharmonic oscillations of nanobubbles and the resultant acoustic emissions under subharmonic resonance conditions. Results showed that a negative correlation between bubble size and subharmonic resonance frequency is readily obtained from the radius response curves.

View Article and Find Full Text PDF

Histotripsy has been proposed as a non-invasive surgical procedure for clinical use that liquefies the tissue into acellular debris by utilizing the mechanical mechanism of bubbles. Accurate and reliable imaging guidance is essential for successful clinical histotripsy implementation. Nakagami imaging is a promising method to evaluate the microstructural change induced by high intensity focused ultrasound.

View Article and Find Full Text PDF

Cell migration is crucial for numerous physiological and pathological processes. A cell adapts its morphology, including the overall and nuclear morphology, in response to various cues in complex microenvironments, such as topotaxis and chemotaxis during migration. Thus, the dynamics of cellular morphology can encode migration strategies, from which diverse migration mechanisms can be inferred.

View Article and Find Full Text PDF

Immunoassay, as the most commonly used method for protein detection, is simple to operate and highly specific. Sensitivity improvement is always the thrust of immunoassays, especially for the detection of trace quantities. The emergence of artificial enzyme, i.

View Article and Find Full Text PDF

Ultrasound technology has been extensively used as one of the efficient and economic methodology to achieve the desired outcomes in many applications by harnessing the physico-chemical effects of acoustic cavitation. However, the cavitation-associated effects, primarily determined by the oscillatory dynamics of cavitation bubbles, are considerably complex and still remain poorly understood. The main objective of this study was to perform a numerical analysis of the acoustic cavitation (i.

View Article and Find Full Text PDF

Cell migration, which is primarily characterized by directional persistence, is essential for the development of normal tissues and organs, as well as for numerous pathological processes. However, there is a lack of simple and efficient tools to analyze the systematic properties of persistence based on cellular trajectory data. Here, we present a novel approach, the entropy of angular distribution , which combines cellular turning dynamics and Shannon entropy to explore the statistical and time-varying properties of persistence that strongly correlate with cellular migration modes.

View Article and Find Full Text PDF

The cavitation dynamics of a two-bubble system in viscoelastic media excited by dual-frequency ultrasound is studied numerically with a focus on the effects of inter-bubble interactions. Compared to the isolated bubble cases, the enhancement or suppression effects can be exerted on the amplitude and nonlinearity of the bubble oscillations to different degrees. Moreover, the interaction effects are found to be highly sensitive to multiple paramount parameters related to the two-bubble system, the dual-frequency ultrasound and the medium viscoelasticity.

View Article and Find Full Text PDF

This study seeks to explore the bubble pulsation characteristics in multi-bubble environment with a special focus on the influences of the size polydispersity and the two-dimensional structure of bubbles. Three representative configurations of three interacting bubbles are formed by setting the initial radii of cavitation bubbles and inter-bubble distances appropriately, then the pulsation characteristics of a small bubble are investigated and compared by the bifurcation analysis. The results illustrate that the bubble size polydispersity and two-dimensional structure would greatly affect the bubble pulsations (i.

View Article and Find Full Text PDF

The cavitation dynamics of an air-vapor mixture bubble with ultrasonic excitation can be greatly affected by the equation of state (EOS) for the interior gases. To simulate the cavitation dynamics, the Gilmore-Akulichev equation was coupled with the Peng-Robinson (PR) EOS or the Van der Waals (vdW) EOS. In this study, the thermodynamic properties of air and water vapor predicted by the PR and vdW EOS were first compared, and the results showed that the PR EOS gives a more accurate estimation of the gases within the bubble due to the less deviation from the experimental values.

View Article and Find Full Text PDF

Due to its physical and/or chemical effects, acoustic cavitation plays a crucial role in various emerging applications ranging from advanced materials to biomedicine. The cavitation bubbles usually undergo oscillatory dynamics and violent collapse within a viscoelastic medium, which are closely related to the cavitation-associated effects. However, the role of medium viscoelasticity on the cavitation dynamics has received little attention, especially for the bubble collapse strength during multi-bubble cavitation with the complex interactions between size polydisperse bubbles.

View Article and Find Full Text PDF

The resonance behaviors of a few lipid-coated microbubbles acoustically activated in viscoelastic media were comprehensively examined via radius response analysis. The size polydispersity and random spatial distribution of the interacting microbubbles, the rheological properties of the lipid shell and the viscoelasticity of the surrounding medium were considered simultaneously. The obtained radius response curves present a successive occurrence of linear resonances, nonlinear harmonic and sub-harmonic resonances with the acoustic pressure increasing.

View Article and Find Full Text PDF

Acoustic droplet vaporization (ADV) plays an important role in focused ultrasound theranostics. Better understanding of the relationship between the ultrasound parameters and the ADV nucleation could provide an on-demand regulation and enhancement of ADV for improved treatment outcome. In this work, ADV nucleation was performed in a dual-frequency focused ultrasound configuration that consisted of a continuous low-frequency ultrasound and a short high-frequency pulse.

View Article and Find Full Text PDF

Acoustic cavitation and its mechanical effects (e.g. stress and strain) play a primary role in ultrasound applications.

View Article and Find Full Text PDF

Background: Thrombosis triggered by platelet activation plays a vital role in the pathogenesis of cardiovascular and cerebrovascular diseases.

Objective: This study aims to find platelet combined biomarkers for cardiovascular diseases and investigate the possibility of Concanavalin A (ConA) acting on platelets as a new pharmacological target.

Methods: High-throughput Technology and bioinformatics analysis were combined and groups of microarray chip gene expression profiles for acute myocardial infarction (AMI) and sickle cell disease (SCD) were obtained using GEO database screening.

View Article and Find Full Text PDF

Encapsulated microbubbles combined with ultrasound have been widely utilized in various biomedical applications; however, the bubble dynamics in viscoelastic medium have not been completely understood. It involves complex interactions of coated microbubbles with ultrasound, nearby microbubbles and surrounding medium. Here, a comprehensive model capable of simulating the complex bubble dynamics was developed via taking the nonlinear viscoelastic behaviors of the shells, the bubble-bubble interactions and the viscoelasticity of the surrounding medium into account simultaneously.

View Article and Find Full Text PDF

The cavitation-mediated bioeffects are primarily associated with the dynamic behaviors of bubbles in viscoelastic tissues, which involves complex interactions of cavitation bubbles with surrounding bubbles and tissues. The radial and translational motions, as well as the resultant acoustic emissions of two interacting cavitation bubbles in viscoelastic tissues were numerically investigated. Due to the bubble-bubble interactions, a remarkable suppression effect on the small bubble, whereas a slight enhancement effect on the large one were observed within the acoustic exposure parameters and the initial radii of the bubbles examined in this paper.

View Article and Find Full Text PDF

Acoustic droplet vaporization (ADV) capable of converting liquid perfluorocarbon (PFC) micro/nanodroplets into gaseous microbubbles has gained much attention due to its medical potentials. However, its physical mechanisms for nanodroplets have not been well understood due to the disappeared superharmonic focusing effect and the prominent Laplace pressure compared to microdroplets, especially for the initial ADV nucleation occurring in a metastable PFC nanodroplet. The classical nucleation theory (CNT) was modified to describe the ADV nucleation via combining the phase-change thermodynamics of perfluoropentane (PFP) and the Laplace pressure effect on PFP nanodroplets.

View Article and Find Full Text PDF

Background: Photothermal therapy (PTT) has attracted considerable attention for cancer treatment as it is highly controllable and minimally invasive. Various multifunctional nanosystems have been fabricated in an "all-in-one" form to guide and enhance PTT by integrating imaging and therapeutic functions. However, the complex fabrication of nanosystems and their high cost limit its clinical translation.

View Article and Find Full Text PDF

Inertial cavitation is crucial for the therapeutic effects of sonodynamic. Therefore, approaches that can induce highly efficient inertial cavitation should be of benefit for sonodynamic effect. Our previous study demonstrated that highly efficient inertial cavitation activity can be achieved through the combinatorial use of a short-pulsed focused ultrasound (SPFU) sequence and perfluorohexane (PFH) nanodroplets.

View Article and Find Full Text PDF

Laser-activated bioprobes with high photothermal conversion efficiency (IRPDA@PFH NDs) based on biocompatible IR-780 doped polydopamine perfluorocarbon nanodroplets (NDs) were developed. When protected by gelatin microspheres, their near-spherical morphologies can be easily observed with transmission electron microscope. Doping IR-780 (3 w/w % of added dopamine hydrochloride) can significantly enhance near-infrared (NIR) absorption and photothermal conversion efficiency to 57.

View Article and Find Full Text PDF

A HIFU sequence with extremely short pulse duration and high pulse repetition frequency can achieve thermal ablation at a low acoustic power using inertial cavitation. Because of its cavitation-dependent property, the therapeutic outcome is unreliable when the treatment zone lacks cavitation nuclei. To overcome this intrinsic limitation, we introduced perfluorocarbon nanodroplets as extra cavitation nuclei into short-pulsed HIFU-mediated thermal ablation.

View Article and Find Full Text PDF

In this study, the bioeffects of acoustic droplet vaporization (ADV) on adjacent cells were investigated by evaluating the real-time cell response at the single-cell level in situ, using a combined ultrasound-exposure and optical imaging system. Two imaging modalities, high-speed and fluorescence imaging, were used to observe ADV bubble dynamics and to evaluate the impact on cell membrane permeabilization (i.e.

View Article and Find Full Text PDF

Photoacoustic cavitation (PAC) is the formation of bubbles in liquids using a focused laser and a pre-established ultrasound synchronously. The decreased threshold of each modality and the precise location of cavitation determined by the focused laser are both significant in the targeted theranostics. In this study, PAC nucleation was described using the modified classical nucleation theory by Kashchiev's scaling function.

View Article and Find Full Text PDF

Cavitation has great application potential in microvessel damage and targeted drug delivery. Concerning cavitation, droplet vaporization has been widely investigated in vitro and in vivo with plasmonic nanoparticles. Droplets with a liquid dodecafluoropentane (DDFP) core enclosed in an albumin shell have a stable and simple structure with good characteristics of laser absorbing; thus, DDFP droplets could be an effective aim for laser-induced cavitation.

View Article and Find Full Text PDF