This study investigates the effects of annealing on the tunnel magnetoresistance (TMR) ratio in CoFeB/MgO/CoFeB-based magnetic tunnel junctions (MTJs) with different capping layers and correlates them with microstructural changes. It is found that the capping layer plays an important role in determining the maximum TMR ratio and the corresponding annealing temperature (). For a Pt capping layer, the TMR reaches ~95% at a of 350 °C, then decreases upon a further increase in .
View Article and Find Full Text PDFTunable metasurfaces can change the optical properties of incident light at will such as amplitude, phase, and polarization in a time-dependent fashion. Ultrafast switching speed and the ability for the pixel size reduction of the tunable metasurface can allow various applications such as light detection and ranging, interferometric sensors, and free space optical communications, to name a few. Although there have been successful demonstrations of the wavefront shaping using the tunable metasurface, the implementation of the two-dimensional metasurface pixel array that can be individually addressed in the optical frequency regime still remains challenging.
View Article and Find Full Text PDFSpatial light modulators are essential optical elements in applications that require the ability to regulate the amplitude, phase and polarization of light, such as digital holography, optical communications and biomedical imaging. With the push towards miniaturization of optical components, static metasurfaces are used as competent alternatives. These evolved to active metasurfaces in which light-wavefront manipulation can be done in a time-dependent fashion.
View Article and Find Full Text PDFTunable metasurfaces enable dynamical control of the key constitutive properties of light at a subwavelength scale. To date, electrically tunable metasurfaces at near-infrared wavelengths have been realized using free carrier modulation, and switching of thermo-optical, liquid crystal and phase change media. However, the highest performance and lowest loss discrete optoelectronic modulators exploit the electro-optic effect in multiple-quantum-well heterostructures.
View Article and Find Full Text PDFObjective: Twenty-four-hour multichannel intraluminal impedance (MII) and pH monitoring is used for detecting reflux episodes in patients with gastroesophageal reflux (GER) disease. However, the clinical significance of baseline impedance levels (BILs) has not been well studied. We aimed to evaluate whether BILs are related to various reflux events or acid-related parameters and to determine whether BILs during specific intervals could be substituted for 24-h BILs.
View Article and Find Full Text PDFDiscrete track magnetic recording media with a 60 nm track pitch and prewritten servo patterns were fabricated and tested for read/write performance, and a feasibility analysis of the embedded servo was performed. The fabrication process consisted of ultraviolet nanoimprint lithography (UV-NIL) and sequential ion beam etching on a conventional perpendicular magnetic recording medium. Magnetic patterns were written to the fabricated tracks at 700 kilo flux changes per inch (kFCI) using a spin stand and were read using magnetic force microscopy (MFM), with a resulting signal-to-noise ratio (SNR) of 12.
View Article and Find Full Text PDFBit patterned media with 25 nm hole diameter and 50 nm pitch size were fabricated with serial processes comprising master patterning with electron-beam lithography, a Si etching process, multi-layer soft stamp replication, and UV nanoimprinting, followed by Co-Pt magnetic material filling by electro-deposition. From these processes, the designed patterns were well defined, and perpendicular magnetic anisotropy of the fabricated bit patterned media was obtained.
View Article and Find Full Text PDF