Ground subsidence caused by natural factors, including groundwater, has been extensively researched. However, there have been few studies on ground sink caused mainly by artifacts, including underground pipelines in urban areas. This paper proposes a method of predicting ground sink susceptibility caused by underground pipelines.
View Article and Find Full Text PDFIn the manufacturing industry, all things related to a product manufactured are generated and managed with a three-dimensional (3D) computer-aided design (CAD) system. CAD models created in a 3D CAD system are represented as geometric and topological information for exchange between different CAD systems. Although 3D CAD models are easy to use for product design, it is not suitable for direct use in manufacturing since information on machining features is absent.
View Article and Find Full Text PDFRecently, studies applying deep learning technology to recognize the machining feature of three-dimensional (3D) computer-aided design (CAD) models are increasing. Since the direct utilization of boundary representation (B-rep) models as input data for neural networks in terms of data structure is difficult, B-rep models are generally converted into a voxel, mesh, or point cloud model and used as inputs for neural networks for the application of 3D models to deep learning. However, the model's resolution decreases during the format conversion of 3D models, causing the loss of some features or difficulties in identifying areas of the converted model corresponding to a specific face of the B-rep model.
View Article and Find Full Text PDF