Publications by authors named "Duggleby R"

Objectives: NKG2D is an activating receptor expressed by natural killer (NK) and CD8+ T cells and activation intensity varies by NKG2D expression level or nature of its ligand. An NKG2D gene polymorphism determines high (HNK1) or low (LNK1) expression. MICA is the most polymorphic NKG2D ligand and stronger effector cell activation associates with methionine rather than valine at residue 129.

View Article and Find Full Text PDF
Article Synopsis
  • Allogeneic haematopoietic cell transplantation (HCT) is a vital treatment for severe blood disorders but poses high risks; better matching strategies, especially regarding Tregs in grafts, are needed for improved outcomes.
  • A study was conducted to compare flow cytometry and epigenetic, DNA-based methods for measuring Treg content in cryopreserved umbilical cord blood (CB) units, assessing their agreement and reliability.
  • Results showed that epigenetic methods consistently provided accurate measurements in both fresh and frozen samples, while flow cytometry was limited to fresh samples due to cell death after freezing; this makes epigenetic analysis a superior approach in evaluating cryopreserved CB.
View Article and Find Full Text PDF
Article Synopsis
  • Regulatory T cells (Tregs) are crucial for immune tolerance, acting as powerful suppressors of inflammation and affecting various immune cell functions.
  • Treg therapy shows promise in modulating immune responses and could potentially replace traditional immunosuppressive drugs, although further research is needed to understand their characteristics and improve treatment methods.
  • The review emphasizes the challenges in isolating and producing Tregs, while identifying suitable applications for this innovative therapy.
View Article and Find Full Text PDF

Highly polymorphic major histocompatibility complex (MHC) molecules are at the heart of adaptive immune responses, playing crucial roles in many kinds of disease and in vaccination. We report that breadth of peptide presentation and level of cell surface expression of class I molecules are inversely correlated in both chickens and humans. This relationship correlates with protective responses against infectious pathogens including Marek's disease virus leading to lethal tumours in chickens and human immunodeficiency virus infection progressing to AIDS in humans.

View Article and Find Full Text PDF

Allogeneic hematopoietic stem cell therapy (HSCT) remains one of the few curative treatments for high-risk hematological malignancies (high-risk leukemia, myelodysplastic syndromes, advanced myeloproliferative disorders, high-risk lymphomas, and multiple myeloma) and is currently applied in more than 15,000 patients per year in Europe. Following HSCT, patients experience a period of reconstitution of the immune system, which seems to be highly dependent on conditioning, immunosuppression regimes, and the level of adverse events the patients experience. During this reconstitution period, the patient is immune compromised and susceptible to opportunistic infections and disease relapse.

View Article and Find Full Text PDF

Human umbilical cord blood (hUCB) has been proposed to contain not only haematopoietic stem cells, but also a rare pluripotent embryonic-like stem cell (ELSc) population that is negative for hematopoietic markers (Lin(-)CD45(-)) and expresses markers typical of pluripotent cells. The aim of this work was to isolate, characterise and expand this ELSc fraction from hUCB, as it may provide a valuable cell source for regenerative medicine applications. We found that we could indeed isolate a Lin(-)CD45(-) population of small cells (3-10 µm diameter) with a high nucleus to cytoplasm ratio that expressed the stem cell markers CD34 and CXCR4.

View Article and Find Full Text PDF

The assessment of nonviable haematopoietic cells by Annexin V staining method in flow cytometry has recently been published by Duggleby et al. Resulting in a better correlation with the observed colony formation in methylcellulose assays than the standard ISHAGE protocol, it presents a promising method to predict cord blood potency. Herein, we applied this method for examining the parameters during processing which potentially could affect cord blood viability.

View Article and Find Full Text PDF

Background: Nonviable CD34+ cells are commonly assessed by standard flow cytometry using the nuclear stain 7-aminoactinomycin D (7AAD). 7AAD, however, only detects necrotic and late apoptotic cells, not earlier apoptosis, which engraft poorly in animal models of cord blood (cord) transplantation. The standard method, therefore, may overestimate engraftment potency of cord units under certain conditions.

View Article and Find Full Text PDF

Natural regulatory T cells (Tregs), characterized as CD4 CD25high Foxp3+, have been described as paramount contributors in immuno-regulation and self-tolerance. CD4 and CD25 have been the main markers used for their isolation, resulting in cells with potent suppressive properties. Nevertheless, low purity and yield continue to be an issue when attempting thorough characterizations and/or up scaling to bigger models and for clinical trials.

View Article and Find Full Text PDF

Plants and microorganisms synthesize valine, leucine and isoleucine via a common pathway in which the first reaction is catalysed by acetohydroxyacid synthase (AHAS, EC 2.2.1.

View Article and Find Full Text PDF

Because antigen-specific cells are the central coordinators of the immune response to infectious organisms, and the principal effector cells in autoimmune disease, there are many circumstances in which investigators may wish to examine the T-cell responses to particular antigens. This chapter outlines techniques for assessing the responses of polyclonal populations of T-lymphocytes by measuring a variety of outputs each of which gives different kinds of information about the response. The outputs discussed are proliferation and cytokine production, with methods for measuring cytokine secretion by the whole population together with techniques for making an estimate of the numbers of cells producing a cytokine in response to antigen, and examining the phenotype of the responsive cells.

View Article and Find Full Text PDF

When an unstable enzyme is incubated with its substrate(s), catalysis may cease before chemical equilibrium is attained. The residual substrate concentrations depend on their initial concentrations, the initial enzymic activity, and the inactivation rate constants for each molecular species that comprise the catalytic cycle. The underlying theory has been elaborated previously for single-substrate reactions and here it is extended to bi-substrate reactions.

View Article and Find Full Text PDF

It is clear that regulatory T cells (Treg) have an important role in preventing autoimmunity and modulating responses to pathogens. Full characterization of Treg cell function in human patients would be greatly facilitated by practical methods for expanding Treg in vitro. Methods for expansion have been reported but whether expression of surface and intracellular markers associated with freshly isolated Treg following expansion correlates with the maintenance of function is unclear.

View Article and Find Full Text PDF

Thiamin (vitamin B1) is required in animal diets because it is the precursor of the enzyme cofactor, thiamin diphosphate. Unlike other B vitamins, the dietary thiamin requirement is proportional to non-fat energy intake but there is no obvious biochemical reason for this relationship. In the present communication we show for two enzymes that the cofactor undergoes a slow destruction during catalysis, which may explain the interdependence of thiamin and energy intakes.

View Article and Find Full Text PDF

Three-dimensional structures have been determined for 13 different enzymes that use thiamine diphosphate (ThDP) as a cofactor. These enzymes fall into five families, where members within a family have similar structures. In different families, there are similarities between some domains that clearly point to a common ancestor for all of these enzymes.

View Article and Find Full Text PDF

The branched-chain amino acids are synthesized by plants, fungi and microorganisms, but not by animals. Therefore, the enzymes of this pathway are potential target sites for the development of antifungal agents, antimicrobials and herbicides. Most research has focused upon the first enzyme in this biosynthetic pathway, acetohydroxyacid synthase (AHAS) largely because it is the target site for many commercial herbicides.

View Article and Find Full Text PDF

The sulfonylureas and imidazolinones are potent commercial herbicide families. They are among the most popular choices for farmers worldwide, because they are nontoxic to animals and highly selective. These herbicides inhibit branched-chain amino acid biosynthesis in plants by targeting acetohydroxyacid synthase (AHAS, EC 2.

View Article and Find Full Text PDF

Isoleucine, leucine and valine are synthesized via a common pathway in which the first reaction is catalysed by AHAS (acetohydroxyacid synthase; EC 2.2.1.

View Article and Find Full Text PDF

Sulfonation is an important reaction in the metabolism of numerous xenobiotics, drugs, and endogenous compounds. A supergene family of enzymes called sulfotransferases (SULTs) catalyze this reaction. In most cases, the addition of a sulfonate moiety to a compound increases its water solubility and decreases its biological activity.

View Article and Find Full Text PDF

Human SULT1A1 belongs to the supergene family of sulfotransferases (SULTs) involved in the sulfonation of xeno- and endobiotics. The enzyme is also one of the SULTs responsible for metabolic activation of mutagenic and carcinogenic compounds and therefore is implicated in various cancer forms. Further, it is not well understood how substrate inhibition takes place with rigid fused multiring substrates such as 17beta-estradiol (E2) at high substrate concentrations when subcellular fractions or recombinant enzymes are used.

View Article and Find Full Text PDF

Despite substantial advances in our understanding of CD4+ CD25+ regulatory T cells, a possible equivalent regulatory subset within the CD8+ T cell population has received less attention. We now describe novel human CD8+/TCR alphabeta+ T cells that have a regulatory phenotype and function. We expanded and cloned these cells using autologous LPS-activated dendritic cells.

View Article and Find Full Text PDF