Background: In glioblastoma (GBM), tumor progression occurs mainly within the irradiated tumor volume. To address this challenge, a radiosensitization strategy with intravenous gadolinium-based theranostic nanoparticles (AGuIX) is being explored in the NANO-GBM phase1b/2R trial (NCT04881032). Here, we present the results of the phase 1b part, which is the first-in-human use of these nanoparticles with radiotherapy and chemotherapy for the treatment of newly diagnosed GBM.
View Article and Find Full Text PDFAGuIX, a novel gadolinium-based nanoparticle, has been deployed in a pioneering double-blinded Phase II clinical trial aiming to assess its efficacy in enhancing radiotherapy for tumor treatment. This paper moves towards this goal by analyzing AGuIX uptake patterns in 23 patients. A phantom was designed to establish the relationship between AGuIX concentration and longitudinal ( ) relaxation.
View Article and Find Full Text PDFThe introduction of magnetic resonance (MR)-guided radiation treatment planning has opened a new space for theranostic nanoparticles to reduce acute toxicity while improving local control. In this work, second-generation AGuIX nanoparticles (AGuIX-Bi) are synthesized and validated. AGuIX-Bi are shown to maintain MR positive contrast while further amplifying the radiation dose by the replacement of some Gd cations with higher Z Bi.
View Article and Find Full Text PDFBackground: Despite standard treatments including chemoradiotherapy with temozolomide (TMZ) (STUPP protocol), the prognosis of glioblastoma patients remains poor. AGuIX nanoparticles have a high radiosensitizing potential, a selective and long-lasting accumulation in tumors and a rapid renal elimination. Their therapeutic effect has been proven in vivo on several tumor models, including glioblastoma with a potential synergetic effect when combined with TMZ based chemoradiotherapy, and they are currently evaluated in 4 ongoing Phase Ib and II clinical trials in 4 indications (brain metastases, lung, pancreatic and cervix cancers) (> 100 patients received AGuIX).
View Article and Find Full Text PDFIntroduction: Alcohol use disorder (AUD) is associated with a significant disease burden in France, where alcohol use is deeply rooted in culture. However, the treatment gap is large because of several barriers, including stigmatisation and drinkers' apprehension about total abstinence. However, standardised and evidence-based interventions based on controlled-drinking for people with AUD are lacking.
View Article and Find Full Text PDFBackground: The measurement of the concentration of theranostic agents in vivo is essential for the assessment of their therapeutic efficacy and their safety regarding healthy tissue. To this end, there is a need for quantitative T measurements that can be obtained as part of a standard clinical imaging protocol applied to tumor patients.
Purpose: To generate T maps from MR images obtained with the magnetization-prepared rapid gradient echo (MPRAGE) sequence.
Background And Purpose: Brain metastasis impacts greatly on patients' quality of life and survival. The phase I NANO-RAD trial assessed the safety and maximum tolerated dose of systemic administration of a novel gadolinium-based nanoparticle, AGuIX, in combination with whole brain radiotherapy in patients with multiple brain metastases not suitable for stereotactic radiotherapy.
Materials And Methods: Patients with measurable brain metastases received escalating doses of AGuIX nanoparticles (15, 30, 50, 75, or 100 mg/kg intravenously) on the day of initiation of WBRT (30 Gy in 10 fractions) in 5 cohorts of 3 patients each.
The use of radiosensitizing nanoparticles with both imaging and therapeutic properties on the same nano-object is regarded as a major and promising approach to improve the effectiveness of radiotherapy. Here, we report the MRI findings of a phase 1 clinical trial with a single intravenous administration of Gd-based AGuIX nanoparticles, conducted in 15 patients with four types of brain metastases (melanoma, lung, colon, and breast). The nanoparticles were found to accumulate and to increase image contrast in all types of brain metastases with MRI enhancements equivalent to that of a clinically used contrast agent.
View Article and Find Full Text PDFInterest of tumor targeting through EPR effect is still controversial due to intrinsic low targeting efficacy and rare translation to human cancers. Moreover, due to different reasons, it has generally been described for relatively large nanoparticles (NPs) (hydrodynamic diameter > 10 nm). In this review EPR effect will be discussed for ultrasmall NPs using the example of the AGuIX® NP (Activation and Guiding of Irradiation by X-ray) recently translated in clinic.
View Article and Find Full Text PDFIntroduction/objectives: To compare 1. measures of pain sensitization (PS) in people with widespread pain (WSP), multi-joint pain, low back pain (LBP) and knee osteoarthritis (KOA) only, in people with knee OA and 2. results of self-reported function and physical performance tests amongst these sub groups.
View Article and Find Full Text PDFWe formulated an ultra-small, gadolinium-based nanoparticle (AGuIX) with theranostic properties to simultaneously enhance MRI tumor delineation and radiosensitization in a glioma model. The 9L glioma cells were orthotopically implanted in 10-week-old Fischer rats. The intra-tumoral accumulation of AGuIX was quantified using MRI T1-maps.
View Article and Find Full Text PDFIntroduction: Occurrence of multiple brain metastases is a critical evolution of many cancers with significant neurological and overall survival consequences, despite new targeted therapy and standard whole brain radiotherapy (WBRT). A gadolinium-based nanoparticle, AGuIX, has recently demonstrated its effectiveness as theranostic and radiosensitiser agent in preclinical studies. The favourable toxicity profile in animals and its administration as a simple intravenous injection has motivated its use in patients with this first in human study.
View Article and Find Full Text PDFBackground: The aim of the study was to evaluate the benefits of the combination of Gadolinium-based nanoparticles AGuIX and radiotherapy on the recurrence free survival after tumor resection in a head and neck animal orthotopic model.
Methods: Human head and neck CAL33 orthotopic tumors were implanted in female NMRI nude mice. The biodistribution of AGuIX was studied by fluorescence imaging.
AGuIX are sub-5 nm nanoparticles made of a polysiloxane matrix and gadolinium chelates. This nanoparticle has been recently accepted in clinical trials in association with radiotherapy. This review will summarize the principal preclinical results that have led to first in man administration.
View Article and Find Full Text PDFLung cancer is a primary cause of cancer deaths worldwide. Timely detection of this pathology is necessary to delay or interrupt lung cancer progression, ultimately resulting in a possible better prognosis for the patient. In this context, magnetic resonance imaging (MRI) is especially promising.
View Article and Find Full Text PDFAim: This study reports the use of gadolinium-based AGuIX nanoparticles (NPs) as a theranostic tool for both image-guided radiation therapy and radiosensitization of brain tumors.
Materials & Methods: Pharmacokinetics and regulatory toxicology investigations were performed on rodents. The AGuIX NPs' tumor accumulation was studied by MRI before 6-MV irradiation.
We recently developed the synthesis of ultrasmall gadolinium-based nanoparticles (GBN), (hydrodynamic diameter <5 nm) characterized by a safe behavior after intravenous injection (renal clearance, preferential accumulation in tumors). Owing to the presence of gadolinium ions, GBN can be used as contrast agents for magnetic resonance imaging (MRI) and as radiosensitizers. The attempt to determine the most opportune delay between the intravenous injection of GBN and the irradiation showed that a very low content of radiosensitizing nanoparticles in the tumor area is sufficient (0.
View Article and Find Full Text PDFMany studies have been devoted to adapting the design of gold nanoparticles to efficiently exploit their promising capability to enhance the effects of radiotherapy. In particular, the addition of magnetic resonance imaging modality constitutes an attractive strategy for enhancing the selectivity of radiotherapy since it allows the determination of the most suited delay between the injection of nanoparticles and irradiation. This requires the functionalization of the gold core by an organic shell composed of thiolated gadolinium chelates.
View Article and Find Full Text PDFNanoparticles are useful tools in oncology because of their capacity to passively accumulate in tumors in particular via the enhanced permeability and retention (EPR) effect. However, the importance and reliability of this effect remains controversial and quite often unpredictable. In this preclinical study, we used optical imaging to detect the accumulation of three types of fluorescent nanoparticles in eight different subcutaneous and orthotopic tumor models, and dynamic contrast-enhanced and vessel size index Magnetic Resonance Imaging (MRI) to measure the functional parameters of these tumors.
View Article and Find Full Text PDFTo design nanoparticle (NP)-based drug delivery systems for pulmonary administration, biodegradable materials are considered safe, but their potential toxicity is poorly explored. We here explore the lung toxicity in mice of biodegradable nanoparticles (NPs) and compare it to the toxicity of non-biodegradable ones. NP formulations of poly(d,l-lactide-co-glycolide) (PLGA) coated with chitosan (CS), poloxamer 188 (PF68) or poly(vinyl alcohol) (PVA), which renders 200 nm NPs of positive, negative or neutral surface charge respectively, were analyzed for their biodistribution by in vivo fluorescence imaging and their inflammatory potential after single lung nebulization in mice.
View Article and Find Full Text PDFSince twenty years, many nanoparticles based on high atomic number elements have been developed as radiosensitizers. The design of these nanoparticles is limited by the classical rules associated with the development of nanoparticles for oncology and by the specific ones associated to radiosensitizers, which aim to increase the effect of the dose in the tumor area and to spare the health tissues. For this application, systemic administration of nanodrugs is possible.
View Article and Find Full Text PDFLung cancer is the most common and most fatal cancer worldwide. Thus, improving early diagnosis and therapy is necessary. Previously, gadolinium-based ultra-small rigid platforms (USRPs) were developed to serve as multimodal imaging probes and as radiosensitizing agents.
View Article and Find Full Text PDFA new efficient type of gadolinium-based theranostic agent (AGuIX®) has recently been developed for MRI-guided radiotherapy (RT). These new particles consist of a polysiloxane network surrounded by a number of gadolinium chelates, usually 10. Owing to their small size (<5 nm), AGuIX typically exhibit biodistributions that are almost ideal for diagnostic and therapeutic purposes.
View Article and Find Full Text PDFOne of the main reasons for the dismal prognosis of lung cancer is related to the late diagnosis of this pathology. In this work, we evaluated the potential of optimized lung MRI techniques and nebulized ultrasmall multimodal gadolinium-based contrast agents [ultrasmall rigid platforms (USRPs)] as a completely noninvasive approach for non-small-cell lung cancer (NSCLC) in vivo detection. A mouse model of NSCLC expressing the luciferase gene was developed.
View Article and Find Full Text PDF