Philos Trans A Math Phys Eng Sci
July 2024
Collagen fibrils are the major constituents of the extracellular matrix, which provides structural support to vertebrate connective tissues. It is widely assumed that the superstructure of collagen fibrils is encoded in the primary sequences of the molecular building blocks. However, the interplay between large-scale architecture and small-scale molecular interactions makes the ab initio prediction of collagen structure challenging.
View Article and Find Full Text PDFWe report high-precision measurements of the deeply virtual Compton scattering (DVCS) cross section at high values of the Bjorken variable x_{B}. DVCS is sensitive to the generalized parton distributions of the nucleon, which provide a three-dimensional description of its internal constituents. Using the exact analytic expression of the DVCS cross section for all possible polarization states of the initial and final electron and nucleon, and final state photon, we present the first experimental extraction of all four helicity-conserving Compton form factors (CFFs) of the nucleon as a function of x_{B}, while systematically including helicity flip amplitudes.
View Article and Find Full Text PDFA long-standing question in nuclear physics is whether chargeless nuclear systems can exist. To our knowledge, only neutron stars represent near-pure neutron systems, where neutrons are squeezed together by the gravitational force to very high densities. The experimental search for isolated multi-neutron systems has been an ongoing quest for several decades, with a particular focus on the four-neutron system called the tetraneutron, resulting in only a few indications of its existence so far, leaving the tetraneutron an elusive nuclear system for six decades.
View Article and Find Full Text PDFWe present new precision measurements of the elastic electron-proton scattering cross section for momentum transfer (Q^{2}) up to 15.75 (GeV/c)^{2}. Combined with existing data, these provide an improved extraction of the proton magnetic form factor at high Q^{2} and double the range over which a longitudinal or transverse separation of the cross section can be performed.
View Article and Find Full Text PDFSolid-state NMR spectroscopy has played an important role in multidisciplinary studies of the extracellular matrix. Here we review how solid-state NMR has been used to probe collagen molecular conformations, dynamics, post-translational modifications and non-enzymatic chemical changes, and in calcified tissues, the molecular structure of bone mineral and its interface with collagen. We conclude that NMR spectroscopy can deliver vital information that in combination with data from structural imaging techniques, can result in significant new insight into how the extracellular matrix plays its multiple roles.
View Article and Find Full Text PDFWe report measurements of the exclusive neutral pion electroproduction cross section off protons at large values of x_{B} (0.36, 0.48, and 0.
View Article and Find Full Text PDFThe function-optimized properties of biominerals arise from the hierarchical organization of primary building blocks. Alteration of properties in response to environmental stresses generally involves time-intensive processes of resorption and reprecipitation of mineral in the underlying organic scaffold. Here, we report that the load-bearing shells of the brachiopod Discinisca tenuis are an exception to this process.
View Article and Find Full Text PDFNanocarriers have tremendous potential for the encapsulation, storage and delivery of active compounds. However, current formulations often employ open structures that achieve efficient loading of active agents, but that suffer undesired leakage and instability of the payloads over time. Here, a straightforward strategy that overcomes these issues is presented, in which protein nanogels are encapsulated within single crystals of calcite (CaCO).
View Article and Find Full Text PDFCa nuclear magnetic resonance (NMR) spectroscopy has been extensively applied to the detailed study of octacalcium phosphate (OCP), Ca (HPO ) (PO ) .5H O, and hybrid derivatives involving intercalated metabolic acids (viz., citrate, succinate, formate, and adipate).
View Article and Find Full Text PDFWe report the first measurement of the (e,e^{'}p) three-body breakup reaction cross sections in helium-3 (^{3}He) and tritium (^{3}H) at large momentum transfer [⟨Q^{2}⟩≈1.9 (GeV/c)^{2}] and x_{B}>1 kinematics, where the cross section should be sensitive to quasielastic (QE) scattering from single nucleons. The data cover missing momenta 40≤p_{miss}≤500 MeV/c that, in the QE limit with no rescattering, equals the initial momentum of the probed nucleon.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
July 2020
Vascular calcification is a ubiquitous pathology of aging. Oxidative stress, persistent DNA damage, and senescence are major pathways driving both cellular and tissue aging, and emerging evidence suggests that these pathways are activated, and even accelerated, in patients with vascular calcification. The DNA damage response-a complex signaling platform that maintains genomic integrity-is induced by oxidative stress and is intimately involved in regulating cell death and osteogenic differentiation in both bone and the vasculature.
View Article and Find Full Text PDFAlkaptonuria (AKU) is a rare disease characterized by high levels of homogentisic acid (HGA); patients suffer from tissue ochronosis: dark brown pigmentation, especially of joint cartilage, leading to severe early osteoarthropathy. No molecular mechanism links elevated HGA to ochronosis; the pigment's chemical identity is still not known, nor how it induces joint cartilage degradation. Here we give key insight on HGA-derived pigment composition and collagen disruption in AKU cartilage.
View Article and Find Full Text PDFCollagen fibrils are central to the molecular organization of the extracellular matrix (ECM) and to defining the cellular microenvironment. Glycation of collagen fibrils is known to impact on cell adhesion and migration in the context of cancer and in model studies, glycation of collagen molecules has been shown to affect the binding of other ECM components to collagen. Here we use TEM to show that ribose-5-phosphate (R5P) glycation of collagen fibrils - potentially important in the microenvironment of actively dividing cells, such as cancer cells - disrupts the longitudinal ordering of the molecules in collagen fibrils and, using KFM and FLiM, that R5P-glycated collagen fibrils have a more negative surface charge than unglycated fibrils.
View Article and Find Full Text PDFSensitivity enhancement by isotope enrichment and DNP NMR enables detection of minor but biologically relevant species in native intact bone, including nucleic acids, choline from phospholipid headgroups, and histidinyl and hydroxylysyl groups. Labelled matrix from the aggressive osteosarcoma K7M2 cell line confirms the assignments of nucleic acid signals arising from purine, pyrimidine, ribose, and deoxyribose species. Detection of these species is an important and necessary step in elucidating the atomic level structural basis of their functions in intact tissue.
View Article and Find Full Text PDFBiomineralization of the extracellular matrix is an essential, regulated process. Inappropriate mineralization of bone and the vasculature has devastating effects on patient health, yet an integrated understanding of the chemical and cell biological processes that lead to mineral nucleation remains elusive. Here, we report that biomineralization of bone and the vasculature is associated with extracellular poly(ADP-ribose) synthesized by poly(ADP-ribose) polymerases in response to oxidative and/or DNA damage.
View Article and Find Full Text PDFWe measured the triple coincidence A(e,e^{'}np) and A(e,e^{'}pp) reactions on carbon, aluminum, iron, and lead targets at Q^{2}>1.5 (GeV/c)^{2}, x_{B}>1.1 and missing momentum >400 MeV/c.
View Article and Find Full Text PDFNanoparticles or similar, nanoscale objects such as proteins or biological fibrils usually have to be deposited from aqueous suspension onto a solid support surface for further characterization by atomic force microscopy (AFM) and related methods such as Kelvin-probe force microscopy (KFM). Here we show, on the examples of functionalized nanoparticles and collagen fibrils, that water desorption after sample preparation affects their electrostatic potential determined by KFM in a predictable manner. We explain this effect with a simple, analytical model based on the capacitance of the partially dielectric-filled tip-sample system.
View Article and Find Full Text PDFShort-range correlated (SRC) nucleon pairs are a vital part of the nucleus, accounting for almost all nucleons with momentum greater than the Fermi momentum (k_{F}). A fundamental characteristic of SRC pairs is having large relative momenta as compared to k_{F}, and smaller center of mass (c.m.
View Article and Find Full Text PDFFibrillar collagens have mechanical and biological roles, providing tissues with both tensile strength and cell binding sites which allow molecular interactions with cell-surface receptors such as integrins. A key question is: how do collagens allow tissue flexibility whilst maintaining well-defined ligand binding sites? Here we show that proline residues in collagen glycine-proline-hydroxyproline (Gly-Pro-Hyp) triplets provide local conformational flexibility, which in turn confers well-defined, low energy molecular compression-extension and bending, by employing two-dimensional C-C correlation NMR spectroscopy on C-labelled intact ex vivo bone and in vitro osteoblast extracellular matrix. We also find that the positions of Gly-Pro-Hyp triplets are highly conserved between animal species, and are spatially clustered in the currently-accepted model of molecular ordering in collagen type I fibrils.
View Article and Find Full Text PDFOctacalcium phosphate (OCP; Ca(HPO)(PO). 5HO) is a plausible precursor phase of biological hydroxyapatite, which composites with a number of biologically relevant organic metabolites. Widely used material science physicochemical structure determination techniques successfully characterize the mineral component of these composites but leave details of the structure, and interactions with mineral, of the organic component almost completely obscure.
View Article and Find Full Text PDFCollagen fibrils are a major component of the extracellular matrix. They form nanometer-scale "cables" acting as a scaffold for cells in animal tissues and are widely used in tissue-engineering. Besides controlling their structure and mechanical properties, it is crucial to have information of their surface charge, as this affects how cells attach to the scaffold.
View Article and Find Full Text PDFThe extracellular matrix of a tissue is as important to life as the cells within it. Its detailed molecular structure defines the environment of a tissue's cells and thus their properties, including differentiation and metabolic status. Collagen proteins are the major component of extracellular matrices.
View Article and Find Full Text PDF