Manually grading D3 data visualizations is a challenging endeavor, and is especially difficult for large classes with hundreds of students. Grading an interactive visualization requires a combination of interactive, quantitative, and qualitative evaluation that are conventionally done manually and are difficult to scale up as the visualization complexity, data size, and number of students increase. We present VISGRADER, a first-of-its kind automatic grading method for D3 visualizations that scalably and precisely evaluates the data bindings, visual encodings, interactions, and design specifications used in a visualization.
View Article and Find Full Text PDFLaw enforcement and domain experts can detect human trafficking (HT) in online escort websites by analyzing suspicious clusters of connected ads. How can we explain clustering results intuitively and interactively, visualizing potential evidence for experts to analyze? We present TRAFFICVIS, the first interface for cluster-level HT detection and labeling. Developed through months of participatory design with domain experts, TRAFFICVIS provides coordinated views in conjunction with carefully chosen backend algorithms to effectively show spatio-temporal and text patterns to a wide variety of anti-HT stakeholders.
View Article and Find Full Text PDFThe increasing use of artificial intelligence (AI) technologies across application domains has prompted our society to pay closer attention to AI's trustworthiness, fairness, interpretability, and accountability. In order to foster trust in AI, it is important to consider the potential of interactive visualization, and how such visualizations help build trust in AI systems. This manifesto discusses the relevance of interactive visualizations and makes the following four claims: i) trust is not a technical problem, ii) trust is dynamic, iii) visualization cannot address all aspects of trust, and iv) visualization is crucial for human agency in AI.
View Article and Find Full Text PDFSubstances involved in overdose deaths have shifted over time and continue to undergo transition. Early detection of emerging drugs involved in overdose is a major challenge for traditional public health data systems. While novel social media data have shown promise, there is a continued need for robust natural language processing approaches that can identify emerging substances.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
June 2018
Deep learning has recently seen rapid development and received significant attention due to its state-of-the-art performance on previously-thought hard problems. However, because of the internal complexity and nonlinear structure of deep neural networks, the underlying decision making processes for why these models are achieving such performance are challenging and sometimes mystifying to interpret. As deep learning spreads across domains, it is of paramount importance that we equip users of deep learning with tools for understanding when a model works correctly, when it fails, and ultimately how to improve its performance.
View Article and Find Full Text PDFACM Trans Interact Intell Syst
February 2018
The advent of mobile health (mHealth) technologies challenges the capabilities of current visualizations, interactive tools, and algorithms. We present Chronodes, an interactive system that unifies data mining and human-centric visualization techniques to support explorative analysis of longitudinal mHealth data. Chronodes extracts and visualizes frequent event sequences that reveal chronological patterns across multiple participant timelines of mHealth data.
View Article and Find Full Text PDFWe present Discovery Dashboard, a visual analytics system for exploring large volumes of time series data from mobile medical field studies. Discovery Dashboard offers interactive exploration tools and a data mining motif discovery algorithm to help researchers formulate hypotheses, discover trends and patterns, and ultimately gain a deeper understanding of their data. Discovery Dashboard emphasizes user freedom and flexibility during the data exploration process and enables researchers to do things previously challenging or impossible to do - in the web-browser and in real time.
View Article and Find Full Text PDFExt Abstr Hum Factors Computing Syst
May 2017
Deep learning is the driving force behind many recent technologies; however, deep neural networks are often viewed as "black-boxes" due to their internal complexity that is hard to understand. Little research focuses on helping people explore and understand the relationship between a user's data and the learned representations in deep learning models. We present our ongoing work, ShapeShop, an interactive system for visualizing and understanding what semantics a neural network model has learned.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
January 2018
Finding patterns in graphs has become a vital challenge in many domains from biological systems, network security, to finance (e.g., finding money laundering rings of bankers and business owners).
View Article and Find Full Text PDFExtracting useful patterns from large network datasets has become a fundamental challenge in many domains. We present VISAGE, an interactive visual graph querying approach that empowers users to construct expressive queries, without writing complex code (e.g.
View Article and Find Full Text PDFObjective: A significant challenge in treating rare forms of cancer such as Glioblastoma (GBM) is to find optimal personalized treatment plans for patients. The goals of our study is to predict which patients survive longer than the median survival time for GBM based on clinical and genomic factors, and to assess the predictive power of treatment patterns.
Method: We developed a predictive model based on the clinical and genomic data from approximately 300 newly diagnosed GBM patients for a period of 2years.
Annu Int Conf IEEE Eng Med Biol Soc
August 2016
Preventing mortality in intensive care units (ICUs) has been a top priority in American hospitals. Predictive modeling has been shown to be effective in prediction of mortality based upon data from patients' past medical histories from electronic health records (EHRs). Furthermore, visualization of timeline events is imperative in the ICU setting in order to quickly identify trends in patient histories that may lead to mortality.
View Article and Find Full Text PDFHT ACM Conf Hypertext Soc Media
September 2015
Social media has been established to bear signals relating to health and well-being states. In this paper, we investigate the potential of social media in characterizing and understanding abstinence from tobacco or alcohol use. While the link between behavior and addiction has been explored in psychology literature, the lack of longitudinal self-reported data on long-term abstinence has challenged addiction research.
View Article and Find Full Text PDFJ Am Med Inform Assoc
November 2015
Mobile sensor data-to-knowledge (MD2K) was chosen as one of 11 Big Data Centers of Excellence by the National Institutes of Health, as part of its Big Data-to-Knowledge initiative. MD2K is developing innovative tools to streamline the collection, integration, management, visualization, analysis, and interpretation of health data generated by mobile and wearable sensors. The goal of the big data solutions being developed by MD2K is to reliably quantify physical, biological, behavioral, social, and environmental factors that contribute to health and disease risk.
View Article and Find Full Text PDFProc 2015 Workshop Vis Anal Healthc (2015)
October 2015
With greater pressures of providing high-quality care at lower cost due to a changing financial and policy environment, the ability to understand variations in care delivery and associated outcomes and act upon this understanding is of critical importance. Building on prior work in visualizing health-care event sequences and in collaboration with our clinical partner, we describe our process in developing a multiple, coordinated visualization system that helps identify and analyze care processes and their conformance to existing care guidelines. We demonstrate our system using data of 5,784 pediatric emergency department visits over a 13-month period for which asthma was the primary diagnosis.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
December 2014
The field of graph visualization has produced a wealth of visualization techniques for accomplishing a variety of analysis tasks. Therefore analysts often rely on a suite of different techniques, and visual graph analysis application builders strive to provide this breadth of techniques. To provide a holistic model for specifying network visualization techniques (as opposed to considering each technique in isolation) we present the Graph-Level Operations (GLO) model.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
December 2014
The field of graph visualization has produced a wealth of visualization techniques for accomplishing a variety of analysis tasks. Therefore analysts often rely on a suite of different techniques, and visual graph analysis application builders strive to provide this breadth of techniques. To provide a holistic model for specifying network visualization techniques (as opposed to considering each technique in isolation) we present the () model.
View Article and Find Full Text PDFGiven the explosive growth of modern graph data, new methods are needed that allow for the querying of complex graph structures without the need of a complicated querying languages; in short, is desirable. We describe our work towards achieving our overall research goal of designing and developing an interactive querying system for large network data. We focus on three critical aspects: scalable data mining algorithms, graph visualization, and interaction design.
View Article and Find Full Text PDFProc IEEE Int Conf Big Data
October 2014
Given a large graph with millions of nodes and edges, say a social network where both its nodes and edges have multiple attributes (e.g., job titles, tie strengths), how to quickly find subgraphs of interest (e.
View Article and Find Full Text PDFMobile devices have become increasingly central to our everyday activities, due to their portability, multi-touch capabilities, and ever-improving computational power. Such attractive features have spurred research interest in leveraging mobile devices for computation. We explore a novel approach that aims to use a mobile device to perform scalable graph computation on large graphs that do not fit in the device's limited main memory, opening up the possibility of performing on-device analysis of large datasets, without relying on the cloud.
View Article and Find Full Text PDF