Physiol Mol Biol Plants
November 2024
Unlabelled: Seed germination is a tightly regulated, non-reversible developmental process, and it is crucial to prevent premature germination under conditions that may not allow the plant's life cycle to be completed. The plant hormone ABA is the key regulator of seed dormancy and inhibition of germination. ABA is also involved in the plant response to drought.
View Article and Find Full Text PDFThe Arabidopsis transcription factor ABSCISIC ACID INSENSITIVE 4 (ABI4) is a key player in the plant hormone abscisic acid (ABA) signaling pathway and is involved in plant response to abiotic stress and development. Expression of the gene is tightly regulated, with low basal expression. Maximal transcript levels occur during the seed maturation and early seed germination stages.
View Article and Find Full Text PDFThe Arabidopsis ubiquitin ligases PUB46, PUB47 and PUB48 are encoded by paralogus genes. Single gene and mutants display increased drought sensitivity compared to wild type (WT) suggesting that each has specific biological activity. The high sequence homology between PUB46 and PUB48 activity suggested that they may also share some aspects of their activity.
View Article and Find Full Text PDFThe transcription factor ABA-INSENSITIVE(ABI)4 has diverse roles in regulating plant growth, including inhibiting germination and reserve mobilization in response to ABA and high salinity, inhibiting seedling growth in response to high sugars, inhibiting lateral root growth, and repressing light-induced gene expression. ABI4 activity is regulated at multiple levels, including gene expression, protein stability, and activation by phosphorylation. Although ABI4 can be phosphorylated at multiple residues by MAPKs, we found that S114 is the preferred site of MPK3.
View Article and Find Full Text PDFInteractions between proteins and DNA are crucial for all biological systems. Many studies have shown the dependence of protein-DNA interactions on the surrounding salt concentration. How these interactions are maintained in the hypersaline environments that halophiles inhabit remains puzzling.
View Article and Find Full Text PDFThe U-Box E3 ubiquitin ligase, AtPUB46, functions in the drought response: T-DNA insertion mutants of this single paralogous gene are hypersensitive to water- and oxidative stress (Adler et al. BMC Plant Biology 17:8, 2017). Here we analyze the phenotype of AtPUB46 overexpressing (OE) plants.
View Article and Find Full Text PDFBackground: Plants respond to abiotic stress on physiological, biochemical and molecular levels. This includes a global change in their cellular proteome achieved by changes in the pattern of their protein synthesis and degradation. The ubiquitin-proteasome system (UPS) is a key player in protein degradation in eukaryotes.
View Article and Find Full Text PDFTomato ABSCISIC ACID RIPENING 1 (ASR1) was the first cloned plant ASR gene. ASR orthologs were then cloned from a large number of monocot, dicot and gymnosperm plants, where they are mostly involved in response to abiotic (drought and salinity) stress and fruit ripening. The tomato genome encodes five ASR genes: ASR1, 2, 3 and 5 encode low-molecular-weight proteins (ca.
View Article and Find Full Text PDFThe chloroplast is the most prominent and metabolically active plastid in photosynthetic plants. Chloroplasts differentiate from proplastids in the plant meristem. Plant plastids contain multiple copies of a small circular genome.
View Article and Find Full Text PDFA plant's ability to cope with salt stress is highly correlated with their ability to reduce the accumulation of sodium ions in the shoot. Arabidopsis mutants affected in the ABSCISIC ACID INSENSITIVE (ABI) 4 gene display increased salt tolerance, whereas ABI4-overexpressors are hypersensitive to salinity from seed germination to late vegetative developmental stages. In this study we demonstrate that abi4 mutant plants accumulate lower levels of sodium ions and higher levels of proline than wild-type plants following salt stress.
View Article and Find Full Text PDFColletotrichum coccodes (Wallr.) S. Hughes, the causal agent of black dot on potato and anthracnose on tomato, reduces yield and crop quality.
View Article and Find Full Text PDFWe have recently demonstrated that the transcription factor ABSCISIC ACID INSENSITIVE 4 (ABI4) mediates abscisic acid and cytokinin inhibition of lateral root formation by reducing polar auxin transport in Arabidopsis thaliana. ( 1) In that study, we provided a direct demonstration of ABI4 expression in phloem companion cells and parenchyma of the vascular system in the mature regions of the roots. Although also studied in mature plants, ABI4 has been studied primarily in germinating seedlings, and its expression has been assumed by some researchers to be restricted to early germination stages.
View Article and Find Full Text PDFKey steps in a plant's development and adaptation to the environment are the initiation and development of lateral roots (LRs). LR development is regulated by auxin, the major plant hormone promoting LR formation, its counteracting hormones cytokinin, and abscisic acid (ABA). Here, we show that mutating ABSCISIC ACID INSENSITIVE4 (ABI4), which encodes an ABA-regulated AP2 domain transcription factor, results in an increased number of LRs.
View Article and Find Full Text PDFSodium/proton exchangers (NHX) are key players in the plant response to salinity and have a central role in establishing ion homeostasis. NHXs can be localized in the tonoplast or plasma membranes, where they exchange sodium ions for protons, resulting in sodium ions being removed from the cytosol into the vacuole or extracellular space. The expression of most plant NHX genes is modulated by exposure of the organisms to salt stress or water stress.
View Article and Find Full Text PDFMutation of tubulin chaperone E (TBCE) underlies hypoparathyroidism, retardation, and dysmorphism (HRD) syndrome with defective microtubule (MT) cytoskeleton. TBCE/yeast Pac2 comprises CAP-Gly, LRR (leucine-rich region), and UbL (ubiquitin-like) domains. TBCE folds alpha-tubulin and promotes alpha/beta dimerization.
View Article and Find Full Text PDFThe manipulation of transacting factors is commonly used to achieve a wide change in the expression of a large number of genes in transgenic plants as a result of a change in the expression of a single gene product. This is mostly achieved by the overexpression of transactivator or repressor proteins. In this study, it is demonstrated that the overexpression of an exogenous DNA-binding protein can be used to compete with the expression of an endogenous transcription factor sharing the same DNA-binding sequence.
View Article and Find Full Text PDFAbiotic stress may result in protein denaturation. To confront protein inactivation, plants activate protective mechanisms that include chaperones and chaperone-like proteins, and low-molecular weight organic molecules, known as osmolytes or compatible solutes. If these protective processes fail, the irreversibly damaged proteins are targeted for degradation.
View Article and Find Full Text PDFAbscisic acid stress ripening 1 (ASR1) is a low molecular weight plant-specific protein encoded by an abiotic stress-regulated gene. Overexpression of ASR1 in transgenic plants increases their salt tolerance. The ASR1 protein possesses a zinc-dependent DNA-binding activity.
View Article and Find Full Text PDFAbscisic acid stress ripening (ASR1) is a highly charged low molecular weight plant specific protein that is regulated by salt- and water-stresses. The protein possesses a zinc-dependent DNA-binding activity (Kalifa et al., Biochem.
View Article and Find Full Text PDFChloroplast metabolism is rapidly affected by salt stress. Photosynthesis is one of the first processes known to be affected by salinity. Here, we report that salinity inhibits chloroplast post-transcriptional RNA processing.
View Article and Find Full Text PDFBackground And Aims: Hylocereus and Selenicereus are native to tropical and sub-tropical America. Based on its taxonomic status and crossability relations it was postulated that H. megalanthus (syn.
View Article and Find Full Text PDFTomato (Lycopersicon esculantum) ASR1 (abscisic acid stress ripening protein), a small plant-specific protein whose cellular mode of action defies deduction based on its sequence or homology analyses, is one of numerous plant gene products with unknown biological roles that become over-expressed under water- and salt-stress conditions. Steady-state cellular levels of tomato ASR1 mRNA and protein are transiently increased following exposure of plants to poly(ethylene glycol), NaCl or abscisic acid. Western blot and indirect immunofluorescence analysis with anti-ASR1 antibodies demonstrated that ASR1 is present both in the cytoplasmic and nuclear subcellular compartments; approx.
View Article and Find Full Text PDFSalt stress results in a massive change in gene expression. An 837 bp cDNA designated ScRab was cloned from shoot cultures of the salt tolerant jojoba (Simmondsia chinesis). The cloned cDNA encodes a full length 200 amino acid long polypeptide that bears high homology to the Rab subfamily of small GTP binding proteins, particularly, the Rab5 subfamily.
View Article and Find Full Text PDF