Proton-hyperpolarized contrast agents are attractive because they can be imaged on virtually any clinical MRI scanner, which is typically equipped to scan only protons rather than heteronuclei (, anything besides protons, , C, N, Xe, Na, .). Even though the lifetime of the proton spin hyperpolarization is only a few seconds, it is sufficient for inhalation and scanning of proton-hyperpolarized gas media.
View Article and Find Full Text PDFThis study reveals that, when two hydrogen atoms are produced on the surface of a catalyst (e. g., a metal nanoparticle) upon dissociation of a parahydrogen molecule, their initial nuclear spin correlation can propagate in a branching-chain fashion as they diffuse and combine with random H atoms to produce H molecules, which subsequently dissociate.
View Article and Find Full Text PDFMetronidazole is a prospective hyperpolarized MRI contrast agent with potential hypoxia sensing utility for applications in cancer, stroke, neurodegenerative diseases, etc. We demonstrate a pilot procedure for production of ∼30 mM hyperpolarized [N]metronidazole in aqueous media by using a phase-separated SABRE-SHEATH hyperpolarization method, with nitrogen-15 polarization exceeding 2.2% on all three N sites achieved in less than 2 min.
View Article and Find Full Text PDFIn this work we achieve a significant overpopulation (P≈1%) of the long-lived spin state (LLS) of methylene protons in 2-bromoethan(H)ol (BrEtOD) obtained in a reaction between ethylene with non-equilibrium nuclear spin order and bromine water. Given all protons in ethylene are magnetically equivalent, its nuclear states are classified into nuclear spin isomers (NSIM) with total spin I = 2,1,0. Addition of parahydrogen to acetylene produces ethylene with a population of only those NSIMs with I = 1,0.
View Article and Find Full Text PDFSymmetric molecules exist as distinct nuclear spin isomers (NSIMs). A deeper understanding of their properties, including interconversion of different NSIMs, requires efficient techniques for NSIM enrichment. In this work, selective hydrogenation of acetylene with parahydrogen (p-H) was used to achieve the enrichment of ethylene NSIMs and to study their equilibration processes.
View Article and Find Full Text PDFWe show that catalyst-free aqueous solutions of hyperpolarized [1-C]succinate can be produced using parahydrogen-induced polarization (PHIP) and a combination of homogeneous and heterogeneous catalytic hydrogenation reactions. We generate hyperpolarized [1-C]fumarate PHIP using para-enriched hydrogen gas with a homogeneous ruthenium catalyst, and subsequently remove the toxic catalyst and reaction side products a purification procedure. Following this, we perform a second hydrogenation reaction using normal hydrogen gas to convert the fumarate into succinate using a solid Pd/AlO catalyst.
View Article and Find Full Text PDFIn this work the mechanism of methylenecyclobutane hydrogenation over titania-supported Rh, Pt and Pd catalysts was investigated using parahydrogen-induced polarization (PHIP) technique. It was found that methylenecyclobutane hydrogenation leads to formation of a mixture of reaction products including cyclic (1-methylcyclobutene, methylcyclobutane), linear (1-pentene, cis-2-pentene, trans-2-pentene, pentane) and branched (isoprene, 2-methyl-1-butene, 2-methyl-2-butene, isopentane) compounds. Generally, at lower temperatures (150-350 °C) the major reaction product was methylcyclobutane while higher temperature of 450 °C favors the formation of branched products isoprene, 2-methyl-1-butene and 2-methyl-2-butene.
View Article and Find Full Text PDFParahydrogen-induced polarization with heterogeneous catalysts (HET-PHIP) has been a subject of extensive research in the last decade since its first observation in 2007. While NMR signal enhancements obtained with such catalysts are currently below those achieved with transition metal complexes in homogeneous hydrogenations in solution, this relatively new field demonstrates major prospects for a broad range of advanced fundamental and practical applications, from providing catalyst-free hyperpolarized fluids for biomedical magnetic resonance imaging (MRI) to exploring mechanisms of industrially important heterogeneous catalytic processes. This review covers the evolution of the heterogeneous catalysts used for PHIP observation, from metal complexes immobilized on solid supports to bulk metals and single-atom catalysts and discusses the general visions for maximizing the obtained NMR signal enhancements using HET-PHIP.
View Article and Find Full Text PDFProduction of hyperpolarized catalyst-free gases and liquids by heterogeneous hydrogenation with parahydrogen can be useful for various technical as well as biomedical applications, including in vivo studies, investigations of mechanisms of industrially important catalytic processes, enrichment of nuclear spin isomers of polyatomic gases, and more. In this regard, the wide systematic search for heterogeneous catalysts effective in pairwise addition required for the observation of parahydrogen-induced polarization (PHIP) effects is crucial. Here in this work we demonstrate the competitive advantage of Pd-based bimetallic catalysts for PHIP in heterogeneous hydrogenations (HET-PHIP).
View Article and Find Full Text PDFParahydrogen-induced polarization of C nuclei by side-arm hydrogenation (PHIP-SAH) for [1-C]acetate and [1-C]pyruvate esters with application of PH-INEPT-type pulse sequences for H to C polarization transfer is reported, and its efficiency is compared with that of polarization transfer based on magnetic field cycling (MFC). The pulse-sequence transfer approach may have its merits in some applications because the entire hyperpolarization procedure is implemented directly in an NMR or MRI instrument, whereas MFC requires a controlled field variation at low magnetic fields. Optimization of the PH-INEPT-type transfer sequences resulted in C polarization values of 0.
View Article and Find Full Text PDFWe demonstrate that heterogeneous/biphasic chemical reactions can be monitored with high spectroscopic resolution using zero-field nuclear magnetic resonance spectroscopy. This is possible because magnetic susceptibility broadening is negligible at ultralow magnetic fields. We show the two-step hydrogenation of dimethyl acetylenedicarboxylate with para-enriched hydrogen gas in conventional glass NMR tubes, as well as in a titanium tube.
View Article and Find Full Text PDFCatalysts with well-defined, single, active centers are of great importance and their utilization allows the gap between homo- and heterogeneous catalysis to be bridged and, importantly, the main selectivity problem of heterogeneous catalysis and the main separation challenge of homogeneous catalysis to be overcome. Moreover, the use of single-site catalysts allows the NMR signal to be significantly enhanced through the pairwise addition of two hydrogen atoms from a parahydrogen molecule to an unsaturated substrate. This review covers the fundamentals of the synthesis of single-site catalysts and shows the new aspects of their applications in both modern catalysis and the field of parahydrogen-based hyperpolarization.
View Article and Find Full Text PDFPd-In/Al O single-site catalyst was able to show high selectivity (up to 98 %) in the gas phase semihydrogenation of propyne. Formation of intermetallic Pd-In compound was studied by XPS during reduction of the catalyst. FTIR-CO spectroscopy confirmed single-site nature of the intermetallic Pd-In phase reduced at high temperature.
View Article and Find Full Text PDFMechanistic insight into the semihydrogenation of 1-butyne and 2-butyne on Cu nanoparticles supported on partially dehydroxylated silica (Cu/SiO) was obtained using parahydrogen. Hydrogenation of 1-butyne over Cu/SiO yielded 1-butene with ≥97% selectivity. The surface modification of this catalyst with tricyclohexylphosphine (PCy) increased the selectivity to 1-butene up to nearly 100%, although at the expense of reduced catalytic activity.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
March 2017
Hyperpolarized (HP) propane produced by the parahydrogen-induced polarization (PHIP) technique has been recently introduced as a promising contrast agent for functional lung magnetic resonance (MR) imaging. However, its short lifetime due to a spin-lattice relaxation time of less than 1 s in the gas phase is a significant translational challenge for its potential biomedical applications. The previously demonstrated approach for extending the lifetime of the HP propane state through long-lived spin states allows the HP propane lifetime to be increased by a factor of ∼3.
View Article and Find Full Text PDF