Determination of the levels of protein cross-linking catalysed by the activity of transglutaminase 2 in various disease states has remained a significant challenge. The ability to quantify the isopeptide ε-(γ-glutamyl) lysine, which can form as a heterogeneous bond within or between proteins has significant analytical and clinical potential as a biomarker in biofluids such as human urine. Increased transglutaminase 2 activity is associated with a number of diseases, such as fibrosis.
View Article and Find Full Text PDFHarnessing the immune system to kill tumors has been revolutionary and, as a result, has had an enormous benefit for patients in extending life and resulting in effective cures in some. However, activation of the immune system can come at the cost of undesirable adverse events such as cytokine release syndrome, immune-related adverse events, on-target/off-tumor toxicity, neurotoxicity and tumor lysis syndrome, which are safety risks that can be challenging to assess non-clinically. This article provides a review of the biology and mechanisms that can result in immune-mediated adverse effects and describes industry approaches using in vitro and in vivo models to aid in the nonclinical safety risk assessments for immune-oncology modalities.
View Article and Find Full Text PDFMany in vitro and in vivo models are used in pharmacological research to evaluate the role of targeted proteins in a disease. Understanding the translational relevance and limitation of these models for analyzing a drug's disposition, pharmacokinetic/pharmacodynamic (PK/PD) profile, mechanism, and efficacy, is essential when selecting the most appropriate model of the disease of interest and predicting clinically efficacious doses of the investigational drug. Selected animal models used in ophthalmology, infectious diseases, oncology, autoimmune diseases, and neuroscience are reviewed here.
View Article and Find Full Text PDFThe inhaled route is still a relatively novel route for delivering biologics and poses additional challenges to those encountered with inhaled small molecules, further complicating the design and interpretation of toxicology studies. A working group formed to summarize the current knowledge of inhaled biologics across industry and to analyze data collated from an anonymized cross-industry survey comprising 12 inhaled biologic case studies (18 individual inhalation toxicity studies on monoclonal antibodies, fragment antibodies, domain antibodies, oligonucleotides, and proteins/peptides). The output of this working group provides valuable insights into the issues faced when conducting toxicology studies with inhaled biologics, including common technical considerations on aerosol generation, use of young and sexually mature nonhuman primates, pharmacokinetic/pharmacodynamic modeling, exposure and immunogenicity assessment, maximum dose setting, and no observed adverse effect levels determination.
View Article and Find Full Text PDFTreatment of nonhuman primates and mice with a humanized antigen-binding fragment (Fab) antibody (UCBFab) inhibiting transforming growth factor β via daily inhalation for up to 13 weeks resulted in low systemic exposure but high local exposure in the lung. Target engagement was demonstrated by reduced levels of signal transducers, phosphoSMAD and plasminogen activator inhibitor-1 in the bronchoalveolar lavage fluid (BALF). Treatment was associated with a high frequency and titer of antidrug antibodies, indicating high local immunogenicity, and local pathology within the lung and draining lymph nodes.
View Article and Find Full Text PDFVarious approaches to first-in-human (FIH) starting dose selection for new molecular entities (NMEs) are designed to minimize risk to trial subjects. One approach uses the minimum anticipated biological effect level (MABEL), which is a conservative method intended to maximize subject safety and designed primarily for NMEs having high perceived safety risks. However, there is concern that the MABEL approach is being inappropriately used for lower risk molecules with negative impacts on drug development and time to patient access.
View Article and Find Full Text PDFClin Pharmacol Ther
April 2020
The availability of multidimensional data together with the development of modern techniques for data analysis represent an exceptional opportunity for clinical pharmacology. Data science-defined in this special issue as the novel approaches to the collection, aggregation, and analysis of data-can significantly contribute to characterize drug-response variability at the individual level, thus enabling clinical pharmacology to become a critical contributor to personalized healthcare through precision dosing. We propose a minireview of methodologies for achieving precision dosing with a focus on an artificial intelligence technique called reinforcement learning, which is currently used for individualizing dosing regimen in patients with life-threatening diseases.
View Article and Find Full Text PDFMonoclonal antibodies (mAbs) are a rapidly growing drug class for which great efforts have been made to optimize certain molecular features to achieve the desired pharmacokinetic (PK) properties. One approach is to engineer the interactions of the mAb with the neonatal Fc receptor (FcRn) by introducing specific amino acid sequence mutations, and to assess their effect on the PK profile with in vivo studies. Indeed, FcRn protects mAbs from intracellular degradation, thereby prolongs antibody circulation time in plasma and modulates its systemic clearance.
View Article and Find Full Text PDFPurpose: CEA TCB is a novel IgG-based T-cell bispecific (TCB) antibody for the treatment of CEA-expressing solid tumors currently in phase I clinical trials (NCT02324257). Its format incorporates bivalent binding to CEA, a head-to-tail fusion of CEA- and CD3e-binding Fab domains and an engineered Fc region with completely abolished binding to FcγRs and C1q. The study provides novel mechanistic insights into the activity and mode of action of CEA TCB.
View Article and Find Full Text PDFQBP359 is an IgG1 human monoclonal antibody that binds with high affinity to human CCL21, a chemokine hypothesized to play a role in inflammatory disease conditions through activation of resident CCR7-expressing fibroblasts/myofibroblasts. The pharmacokinetics (PK) and pharmacodynamics (PD) of QBP359 in non-human primates were characterized through an integrated approach, combining PK, PD, immunogenicity, immunohistochemistry (IHC) and tissue profiling data from single- and multiple-dose experiments in cynomolgus monkeys. When compared with regular immunoglobulin typical kinetics, faster drug clearance was observed in serum following intravenous administration of 10 mg/kg and 50 mg/kg of QBP359.
View Article and Find Full Text PDFA novel format was introduced at the recent AAPS NBC Workshop on Method Development, Validation and Troubleshooting in San Diego on 18th May 2014. The workshop format was initiated by Binodh De Silva; Marie Rock and Sherri Dudal joined the initiative to develop and chair the workshop. Questions were solicited by a variety of avenues, including a Linked-In Discussion Group.
View Article and Find Full Text PDFIn September 2013, the FDA released a draft revision of the Bioanalytical Method Validation (BMV) Guidance, which included a number of changes to the expectations for bioanalysis, most notably the inclusion of biomarker assays and data. To provide a forum for an open, inclusive discussion of the revised draft BMV Guidance, the AAPS and FDA once again collaborated to convene a two-and-a-half day workshop during early December 2013 in Baltimore, MD, USA. The resulting format embodied extensive open discussion and each thematic session included only brief, concise descriptions by Agency and industry representatives prior to opening the floor discussion.
View Article and Find Full Text PDFBackground: The fully human monoclonal antibody mAb123, which binds to and neutralizes chemokine motif ligand-21 (CCL21) displays a faster clearance in cynomolgus monkey compared with typical IgG kinetics. A direct and an immunoaffinity LC-MS/MS assays were developed to compare with the previously established ligand-binding assays (LBAs).
Results: A strong correlation of LC-MS/MS pharmacokinetic data with LBA data confirmed the rapid drug disposition of mAb123 is an intrinsic property of the molecule, rather than interference of anti-mAb123 antibodies in the LBA.
The bioanalytical scientist plays a key role in the project team for the drug development of biotherapeutics from the discovery to the marketing phase. Information from the project team members is required for assay development and sample analysis during the discovery, preclinical and clinical phases of the project and input is needed from the bioanalytical scientist to help data interpretation. The European Bioanalysis Forum target team 20 discussed many of the gaps in information and communication between the bioanalytical scientist and project team members as a base for providing a perspective on the bioanalytical scientist's role and interactions within the project team.
View Article and Find Full Text PDFAs part of the GBC (Global Bioanalysis Consortium), the L3 assay format team has focused on reviewing common platforms used to support ligand binding assays in the detection of biotherapeutics. The following review is an overview of discussions and presentations from around the globe with a group of experts from different companies to allow an international harmonization of common practices and suggestions for different platforms. Some of the major platforms include Gyrolab, Erenna, RIA, AlphaLISA, Delfia, Immuno-PCR, Luminex, BIAcore, and ELISAs.
View Article and Find Full Text PDFThe 2013 7th Workshop on Recent Issues in Bioanalysis was held in Long Beach, California, USA, where close to 500 professionals from pharmaceutical and biopharmaceutical companies, CROs and regulatory agencies convened to discuss current topics of interest in bioanalysis. These 'hot' topics, which covered both small and large molecules, were the starting point for fruitful exchanges of knowledge, and sharing of ideas among speakers, panelists and attendees. The discussions led to specific recommendations pertinent to bioanalytical science.
View Article and Find Full Text PDFOver 400 professionals representing pharmaceutical companies, CROs, and multiple regulatory agencies participated in the 6th Workshop on Recent Issues in Bioanalysis (WRIB). Like the previous sessions, this event was in the format of a practical, focused, highly interactive and informative workshop aiming for high-quality, improved regulatory compliance and scientific excellence. Numerous 'hot' topics in bioanalysis of both small and large molecules were shared and discussed, leading to consensus and recommendations among panelists and attendees representing the bioanalytical community.
View Article and Find Full Text PDFHuman invariant NKT (iNKT) cells are a unique subset of T cells, which recognize glycolipids presented by the CD1d. Among the iNKT cells, several functionally distinct subsets have been characterized according to CD4 and/or CD8 co-receptor expression. The current study is focussed on the CD4(+) iNKT cell subset and its role in an anti-infectious response.
View Article and Find Full Text PDFNKT cells belong to a conserved T lymphocyte subgroup that has been implicated in the regulation of various immune responses, including responses to viruses, bacteria, and parasites. They express a semi-invariant TCR that recognizes glycolipids presented by the nonpolymorphic MHC class I-like molecule CD1d, and upon activation, they produce various pro- and anti-inflammatory cytokines. Recent studies have shed light on the nature of glycolipids and the environmental signals that may influence the production of cytokines by NKT cells and thus, modulate the immune response.
View Article and Find Full Text PDFHuman Vgamma9Vdelta2 T cells play a crucial role in early immune response to intracellular pathogens. Moreover, in brucellosis, these cells are drastically increased in the peripheral blood of patients during the acute phase of infection. In vitro, Vgamma9Vdelta2 T cells are capable of inhibiting Brucella growth and development through a combination of mechanisms: 1) cytotoxicity, 2) macrophage activation and bactericidal activity through cytokine and chemokine secretion, and 3) antibacterial effects.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a complex disorder for which various in vivo models exist. The TgCRND8 mouse, transgenic for the human amyloid precursor protein, is an aggressive early onset model of brain amyloid deposition. Preliminary studies revealed that when the transgene is expressed on an A/J genetic background, these mice not only survive longer but also deposit less parenchymal amyloid-beta (Abeta) peptides as compared to those on a C57BL/6 background.
View Article and Find Full Text PDFBrucellosis is a worldwide human zoonosis caused by intracellular bacteria of the genus Brucella. Virulence factors play an important role in allowing Brucella infection and proliferation within macrophages. Brucella enters macrophages through lipid raft microdomains, avoids phagolysosome fusion, and inhibits TNF-alpha secretion and apoptosis.
View Article and Find Full Text PDFHuman Vgamma9Vdelta2 T cells play a crucial role in early immune response to intracellular pathogens. In brucellosis infection, this population of cells is drastically increased in the peripheral blood of patients during the acute phase of infection. In vitro, Vgamma9Vdelta2 T cells exhibit strong cytolytic activity against Brucella-infected cells and are able to impair intracellular growth of Brucella suis in autologous macrophages.
View Article and Find Full Text PDF