This article proposes that Paul Langevin should be considered the originator of ultrasonic metrology. He established the theoretical foundation for the use of radiation pressure for the measurement of acoustic power, by considering the energy density at a target in a beam. This approach was used for calibrating the ultrasonic transducers he helped to develop for submarine detection and underwater communications during the First World War (WWI).
View Article and Find Full Text PDFThe history of the European Federation of Societies in Ultrasound in Medicine and Biology (EFSUMB) is closely related to the general history of ultrasound. In the presented paper the physical background and history of technologies including A-mode, Time motion or M-mode, 2D Imaging (B-mode) are summarized. In addition, ultrasound tissue characterization, Doppler ultrasound, 3D and 4D ultrasound, intracavitary and endoscopic ultrasound, interventional ultrasound, ultrasonic therapy, contrast enhanced ultrasound (CEUS) and key developments in echocardiography are discussed.
View Article and Find Full Text PDFJ Acoust Soc Am
October 2018
It is proposed that the ultrasound frequency spectrum should be divided into three bands in order to facilitate a more rational assessment of its health effects. Whilst statement of the frequencies at the borders of these bands facilitates their definition, it is recognized that these observables vary continuously with frequency and consequently these border frequencies should not be used to rule out the possibility of a given effect occurring. The lowest band, US(A), lies between 17.
View Article and Find Full Text PDFThe historical origins of medical physics are traced from the first use of weighing as a means of monitoring health by Sanctorius in the early seventeenth century to the emergence of radiology, phototherapy and electrotherapy at the end of the nineteenth century. The origins of biomechanics, due to Borelli, and of medical electricity following Musschenbroek's report of the Leyden Jar, are included. Medical physics emerged as a separate academic discipline in France at the time of the Revolution, with Jean Hallé as its first professor.
View Article and Find Full Text PDFWe have previously shown that MHz frequency ultrasound causes contraction of the carotid artery in vitro. We now extend this investigation to equine mesenteric arteries and investigate the cellular mechanisms. In vitro exposure of the large lateral cecal mesenteric artery to 4-min periods of 3.
View Article and Find Full Text PDFThe propagation of acoustic waves is a fundamentally non-linear process, and only waves with infinitesimally small amplitudes may be described by linear expressions. In practice, all ultrasound propagation is associated with a progressive distortion in the acoustic waveform and the generation of frequency harmonics. At the frequencies and amplitudes used for medical diagnostic scanning, the waveform distortion can result in the formation of acoustic shocks, excess deposition of energy, and acoustic saturation.
View Article and Find Full Text PDFObjective: The main function of the breast is to produce milk for offspring. As such, the ductal system, which carries milk from the milk-secreting glands (alveoli) to the nipple, is central to the natural function of the breast. The ductal system is also the region in which many malignancies originate and spread.
View Article and Find Full Text PDFUltrasound is known to produce a range of nonlethal responses in cells and tissues. Frequencies in the kilohertz ultrasound range have been shown to produce relaxation in large arteries. The present work explores the effects of insonation at MHz frequencies, representative of those used diagnostically and therapeutically, in an in vitro preparation of the carotid artery.
View Article and Find Full Text PDFAcoustic dose is defined as the energy deposited by absorption of an acoustic wave per unit mass of the medium supporting the wave. Expressions for acoustic dose and acoustic dose-rate are given for plane-wave conditions, including temporal and frequency dependencies of energy deposition. The relationship between the acoustic dose-rate and the resulting temperature increase is explored, as is the relationship between acoustic dose-rate and radiation force.
View Article and Find Full Text PDFStandard test tools have been evaluated for the assessment of safety associated with a prototype transducer intended for a novel radiation force elastographic imaging system. In particular, safety has been evaluated by direct measurement of temperature rise, using a standard thermal test object, and detection of inertial cavitation from acoustic emission. These direct measurements have been compared with values of the thermal index and mechanical index, calculated from acoustic measurements in water using standard formulae.
View Article and Find Full Text PDFThe safety of exposure to diagnostic ultrasound is evaluated using a structured approach to risk assessment, based on the acoustic output of present ultrasound scanners. Thermal hazard is described, the magnitude and probability of temperature rise is reviewed, and the severity of harm from any outcome is reviewed. Similar assessments are made separately for acoustic cavitation and gas-body effects, which have previously been considered together.
View Article and Find Full Text PDFProcesses that can produce a biological effect with some degree of heating (ie, about 1 degrees C above the physiologic temperature) act via a thermal mechanism. Investigations with laboratory animals have documented that pulsed ultrasound can produce elevations of temperature and damage in biological tissues in vivo, particularly in the presence of bone (intracranial temperature elevation). Acoustic outputs used to induce these adverse bioeffects are within the diagnostic range, although exposure times are usually considerably longer than in clinical practice.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
October 2012
A new development in ultrasound measurement technology-a two-dimensional hydrophone array-is presented. Using the established technology of PVDF ultrasound sensors, this novel hydrophone array has 64 circular elements (each of 0.2 mm diameter) arranged in an 8/spl times/8 pattern with 1 mm spacing between element centers.
View Article and Find Full Text PDFHip prosthesis loosening can be determined in vivo using a vibration-based technique called vibrometry. In this technique, a low frequency (<1000Hz) sinusoidal vibration is applied to the femoral condyles and the resulting vibration is measured at the greater trochanter. If the prosthesis is securely fixed, the output vibration signal matches that of the input vibration, whereas if the prosthesis is loose, the output vibration signal is distorted and shows the marked presence of harmonics of the input frequency.
View Article and Find Full Text PDFThe use of impulsive acoustic radiation force for transient strain imaging was investigated and compared with conventional elastography. A series of experiments were performed to evaluate the performances of the technique on gelatine phantoms containing inclusions and to determine a range of applications where radiation force elastography may be useful compared with static elastography. Slip boundaries and cylindrical inclusions of varying elastic modulus were placed in background materials.
View Article and Find Full Text PDFObjective: This safety study was designed to investigate tissue heating close to the surface of transvaginal ultrasound transducers, with the objective of assessing the validity of manufacturing safety standards set by the International Electrotechnical Commission (IEC).
Methods: The transducers investigated in this study were held in contact with a layered soft-tissue mimicking material (TMM), and the temperature increase was measured at various depths using a miniature thermocouple. The temperature rise at 200 s was recorded, and the measured profiles of temperature rise with depth were compared with profiles predicted from both analytical and numeric models.
Prog Biophys Mol Biol
February 2007
Protection from inappropriate or hazardous exposure to ultrasound is controlled through international standards and national regulations. IEC standard 60601 part 1 establishes requirements for the mechanical, electrical, chemical and thermal safety for all electro-medical equipment. The associated part 2 standard for diagnostic medical ultrasonic equipment sets no upper limits on ultrasonic exposure.
View Article and Find Full Text PDFAim: Acoustic streaming in amniotic fluid has been investigated under a variety of conditions relevant to the diagnostic use of ultrasound.
Method: An ultrasonic Doppler method has been used for measurement. Streaming velocities have been compared with those generated in water for the same exposure conditions.
The use of impulsive acoustic radiation force for strain imaging was investigated. A focused ultrasound transducer was used to apply localized radiation force to a small volume of tissue mimic (100 mm3) for durations of 8 ms. A conventional real-time ultrasound imaging probe was used to obtain echo signals.
View Article and Find Full Text PDF