Publications by authors named "Duch M"

Glutathione (GSH) plays a vital role in the regulation of intracellular functions which alterations in physiological glutathione levels are associated to various diseases. Molecular bioimaging is a sensitive method for GSH detection, but challenges persist in the development of fluorescent probes, mainly concerning long-term tracking of intracellular GSH concentration because of aggregation of molecular probes and their washout in cells. Engineered nanomaterials have shown great promise for increasing the disease diagnosis accuracy.

View Article and Find Full Text PDF

Objectives: Anti-PD-(L)1 agents changed the landscape of recurrent or metastatic head and neck squamous cell carcinoma (R/M HNSCC) treatment. Previous studies showed improved response rates to salvage chemotherapy (SCT) after progression to anti-PD-(L)1 agents. This study aims to evaluate the outcomes of SCT and to identify predictors of response and survival in patients with R/M HNSCC.

View Article and Find Full Text PDF

Nano- and micro-carriers of therapeutic molecules offer numerous advantages for drug delivery, and the shape of these particles plays a vital role in their biodistribution and their interaction with cells. However, analysing how microparticles are taken up by cells presents methodological challenges. Qualitative methods like microscopy provide detailed imaging but are time-consuming, whereas quantitative methods such as flow cytometry enable high-throughput analysis but struggle to differentiate between internalised and surface-bound particles.

View Article and Find Full Text PDF

Drug delivery advances rely on using nano- and microsized carriers to transfer therapeutic molecules, although challenges persist in increasing the availability of new and even approved pharmaceutical products. Particle shape, a critical determinant in how these carriers distribute within the body after administration, raises opportunities of using, for instance, micrometer-sized nonspherical particles for vascular targeting and thereby creating new prospects for precise drug delivery to specific targeted areas. The versatility of polycrystalline silicon microfabrication allows for significant variation in the size and shape of microchips, and so, in the current work, photolithography was employed to create differently shaped polysilicon microchips, including cuboids, cubes, bars, and cylinders, to explore the influence of particle shape on cellular interactions.

View Article and Find Full Text PDF

This study evaluates the feasibility of using post-transplant cyclophosphamide (PTCY) prophylaxis in allo-hematopoietic cell transplantation (HCT) for adults aged 65 and older. PTCY is increasingly used to prevent graft-versus-host disease (GVHD) across all donor types, but concerns remain about potential risks, especially in older patients. Fifty-seven adults aged 65 or older with hematological malignancies, undergoing their first allo-HCT with PTCY prophylaxis between January 2011 and January 2023 were included.

View Article and Find Full Text PDF

The goal of this study is to provide a benchmark for the use of Monte Carlo simulation when applied to coincidence summing corrections. The examples are based on simple geometries: two types of germanium detectors and four kinds of sources, to mimic eight typical measurement conditions. The coincidence corrective factors are computed for four radionuclides.

View Article and Find Full Text PDF

This study presents the performance of two fast Monte Carlo codes, PENELOPE/penEasyIR and MCGPU-IR in order to assess operator doses in interventional radiology. In particular, it aims to validate the calculations when workers are protected with shielding located between the patient and the operator. The experiments are performed in a calibration laboratory and measurements are gathered using Thermo EPD and Mirion DMC personal active dosemeters.

View Article and Find Full Text PDF

PyMCGPU-IR is an innovative occupational dose monitoring tool for interventional radiology procedures. It reads the radiation data from the Radiation Dose Structured Report of the procedure and combines this information with the position of the monitored worker recorded using a 3D camera system. This information is used as an input file for the fast Monte Carlo radiation transport code MCGPU-IR in order to assess the organ doses, Hp(10) and Hp(0.

View Article and Find Full Text PDF

Individual monitoring of radiation workers is essential to ensure compliance with legal dose limits and to ensure that doses are As Low As Reasonably Achievable. However, large uncertainties still exist in personal dosimetry and there are issues with compliance and incorrect wearing of dosimeters. The objective of the PODIUM (Personal Online Dosimetry Using Computational Methods) project was to improve personal dosimetry by an innovative approach: the development of an online dosimetry application based on computer simulations without the use of physical dosimeters.

View Article and Find Full Text PDF

The use of micrometric-sized vehicles could greatly improve selectivity of cytotoxic compounds as their lack of self-diffusion could maximize their retention in tissues. We have used polysilicon microparticles () to conjugate bipyridinium-based compounds, able to induce cytotoxicity under regular intracellular conditions. Homogeneous functionalization in suspension was achieved, where the open-chain structure exhibits a more dense packing than cyclic analogues.

View Article and Find Full Text PDF

Current advances in materials science have demonstrated that extracellular mechanical cues can define cell function and cell fate. However, a fundamental understanding of the manner in which intracellular mechanical cues affect cell mechanics remains elusive. How intracellular mechanical hindrance, reinforcement, and supports interfere with the cell cycle and promote cell death is described here.

View Article and Find Full Text PDF

Current microtechnologies have shown plenty of room inside a living cell for silicon chips. Microchips as barcodes, biochemical sensors, mechanical sensors and even electrical devices have been internalized into living cells without interfering their cell viability. However, these technologies lack from the ability to trap and preconcentrate cells in a specific region, which are prerequisites for cell separation, purification and posterior studies with enhanced sensitivity.

View Article and Find Full Text PDF

Purpose: Interventional radiology techniques cause radiation exposure both to patient and personnel. The radiation dose to the operator is usually measured with dosimeters located at specific points above or below the lead aprons. The aim of this study is to develop and validate two fast Monte Carlo (MC) codes for radiation transport in order to improve the assessment of individual doses in interventional radiology.

View Article and Find Full Text PDF

Exposure levels to staff in interventional radiology (IR) may be significant and appropriate assessment of radiation doses is needed. Issues regarding measurements using physical dosemeters in the clinical environment still exist. The objective of this work was to explore the prerequisites for assessing staff radiation dose, based on simulations only.

View Article and Find Full Text PDF

Background: Preventing sexual violence in nightlife environments is a pervasive issue across many countries. This study explored the associated impact of a nightlife worker sexual violence awareness raising/bystander training programme (STOP-SV) on trainees' sexual violence myth acceptance and readiness and confidence to intervene.

Methods: : Pre- and post-test (n = 118), and 3-month follow-up (n = 38) trainee surveys were implemented across three countries (Czech Republic, Portugal and Spain).

View Article and Find Full Text PDF

Introduction: Interventional procedures are associated with potentially high radiation doses to the skin. The 2013/59/EURATOM Directive establishes that the equipment used for interventional radiology must have a device or a feature informing the practitioner of relevant parameters for assessing patient dose at the end of the procedure. Monte Carlo codes of radiation transport are considered to be one of the most reliable tools available to assess doses.

View Article and Find Full Text PDF

Next generation life science technologies will require the integration of building blocks with tunable physical and chemical architectures at the microscale. A central issue is to govern the multidimensional anisotropic space that defines these microparticle attributes. However, this control is limited to one or few dimensions due to profound fabrication tradeoffs, a problem that is exacerbated by miniaturization.

View Article and Find Full Text PDF

We present , a novel approach and set of scripts to aid the implementation of computerized behavioral experiments outside the laboratory. enables subjects to join the experiment using a web portal that requires no software apart from a web browser. Experimenters are likewise enabled to administer their experiments from anywhere in the world.

View Article and Find Full Text PDF

This paper presents the results of a parametric study on the occupational exposure in interventional radiology to explore the influence of various variables on the staff doses. These variables include the angiography beam settings: x-ray peak voltage (kVp), added copper filtration, field diameter, beam projection and source to detector distance. The study was performed using Monte-Carlo simulations with MCNPX for more than 5600 combinations of parameters that account for different clinical situations.

View Article and Find Full Text PDF

In Spain the legal age to buy alcohol is 18 years. However, official surveys show that minors perceive alcohol availability to be easy. This paper describes the impacts of a community-based intervention to increase vendors' compliance with age limits regarding alcohol sales in supermarkets.

View Article and Find Full Text PDF

Bipyridinium salts, commonly known as viologens, are π-acceptor molecules that strongly interact with π-donor compounds, such as porphyrins or amino acids, leading their self-assembling. These properties have promoted us to functionalize polysilicon microparticles with bipyridinium salts for the encapsulation and release of π-donor compounds such as catecholamines and indolamines. In this work, the synthesis and characterization of four gemini-type amphiphilic bipyridinium salts (-), and their immobilization either non-covalently or covalently on polysilicon surfaces and microparticles have been achieved.

View Article and Find Full Text PDF

Alcohol is a common drug misused by young people worldwide. Previous studies have found that attitudes towards heavy consumption are stronger predictors than general norms concerning alcohol. This study aims to explore adolescents' alcohol use and drunkenness, to understand adolescents' attitudes towards alcohol use, drunkenness and prevention approaches, and to explore associations between attitudes and personal alcohol use and demographics.

View Article and Find Full Text PDF

Cells comprise mechanically active matter that governs their functionality, but intracellular mechanics are difficult to study directly and are poorly understood. However, injected nanodevices open up opportunities to analyse intracellular mechanobiology. Here, we identify a programme of forces and changes to the cytoplasmic mechanical properties required for mouse embryo development from fertilization to the first cell division.

View Article and Find Full Text PDF

Micrometer-sized silicon chips have been demonstrated to be cell-internalizable, offering the possibility of introducing in cells even smaller nanoelements for intracellular applications. On the other hand, silicon nanowires on extracellular devices have been widely studied as biosensors or drug delivery systems. Here, we propose the integration of silicon nanowires on cell-internalizable chips in order to combine the functional features of both approaches for advanced intracellular applications.

View Article and Find Full Text PDF

Objectives: This study aimed to investigate associations between occupational physical activity patterns (physical work demands linked to job title) and leisure time physical activity (assessed by questionnaire) with cardiorespiratory fitness (assessed by exercise test) among men and women in the German working population.

Design: Population-based cross-sectional study.

Setting: Two-stage cluster-randomised general population sample selected from population registries of 180 nationally distributed sample points.

View Article and Find Full Text PDF