Worldwide, winemakers are increasingly adopting alcohol management strategies to counter the higher wine ethanol concentrations observed over the past ~30 years. Wines with high ethanol levels exhibit increased 'hotness' on the palate, which is generally considered to negatively impact wine quality. This study investigated changes in the chemical and sensory profiles of five Cabernet Sauvignon wines following their partial dealcoholization by reverse osmosis-evaporative perstraction (RO-EP).
View Article and Find Full Text PDFWarmer growing seasons, variations to grape ripening dynamics, and stylistic changes have contributed to increased wine alcohol levels, which can negatively impact sensory properties. As a consequence, winemakers have sought technological innovations to produce reduced alcohol wine (RAW). The sensory methodology used by industry to optimize the ethanol content of RAW is known as 'alcohol sweetspotting'.
View Article and Find Full Text PDFRecently identified as another form of cooperativity, interannular cooperativity is rarely observed in supramolecular chemistry. A tetra-porphyrin molecular tweezer with two bis-porphyrin binding sites is reported that exhibits archetypal interannular cooperativity when complexing 1,4-diazabicyclo[2.2.
View Article and Find Full Text PDFThis study investigated compositional changes in red wines resulting from wine alcohol removal by reverse osmosis-vaporative perstraction (RO-EP) and provides insight into the physical and chemical changes in reduced alcohol wine (RAW). Trial 1 involved RO-EP treatment of three wines that were analyzed pre-treatment, post-treatment, and post-treatment with alcohol adjustment (i.e.
View Article and Find Full Text PDFThe effect of the degree of conformational rigidity and/or flexibility on preorganisation in artificial molecular receptors continues to be actively explored by supramolecular chemists. This work describes a bis-porphyrin architecture, linked via a rigid polycyclic backbone, in which a sterically bulky 2,3,5,6-tetramethylphenyl diimide core restricts rotation to afford two non-interconvertible tweezer conformations; syn- and anti-. After separation, the host-guest chemistry of each conformation was studied independently.
View Article and Find Full Text PDFThree aqueous self-assembling poly(acrylate) networks have been designed to gain insight into the factors controlling the complexation and release of small molecules within them. These networks are formed between 8.8% 6-(2-aminoethyl)amino-6-deoxy-6-β-cyclodextrin, β-CDen, randomly substituted poly(acrylate), PAAβ-CDen, and one of the 3.
View Article and Find Full Text PDFThe relative proportion of water and ethanol present in alcoholic beverages can significantly influence the perception of wine sensory attributes. This study therefore investigated changes in wine ethanol concentration due to evaporation from wine glasses. The ethanol content of commercial wines exposed to ambient conditions while in wine glasses was monitored over time.
View Article and Find Full Text PDFThe employment of cyclodextrin host-guest complexation to construct supramolecular assemblies with an emphasis on polymer networks is reviewed. The main driving force for this supramolecular assembly is host-guest complexation between cyclodextrin hosts and guest groups either of which may be discrete molecular species or substituents on a polymer backbone. The effects of such complexation on properties at the molecular and macroscopic levels are discussed.
View Article and Find Full Text PDFCurcumin is a biologically active polyphenol and a yellow pigment extracted from turmeric. Our previous study has shown effective encapsulation of curcumin using diamide linked γ-cyclodextrin dimers, namely 66γCD2su and 66γCD2ur, through cooperative 1:1 host-guest complexation. In this study, the excited-state dynamics of curcumin complexed with either 66γCD2su or 66γCD2ur in water are investigated using femtosecond transient absorption spectroscopy.
View Article and Find Full Text PDFHydrophobically modified polyacrylates are shown to suppress the degradation of the medicinal pigment curcumin under physiological conditions. In aqueous solution, the 3% octadecyl randomly substituted polyacrylate, PAAC18, forms micelle-like aggregates at a concentration of <1 wt % and a hydrogel at >1 wt %. Under both conditions, PAAC18 shows a remarkable ability to suppress the degradation of curcumin at pH 7.
View Article and Find Full Text PDFDiamide linked γ-cyclodextrin (γ-CD) dimers are proposed as molecular-scale delivery agents for the anticancer agent curcumin. N,N'-Bis(6(A)-deoxy-γ-cyclodextrin-6(A)-yl)succinamide (66γCD2su) and N,N'-bis(6(A)-deoxy-γ-cyclodextrin-6(A)-yl)urea (66γCD2ur) markedly suppress the degradation of curcumin by forming a strong 1:1 cooperative binding complexes. The results presented in this study describe the potential efficacy of 66γCD2su and 66γCD2ur for intracellular curcumin delivery to cancer cells.
View Article and Find Full Text PDFPhys Chem Chem Phys
October 2012
Ligand-metal interaction between curcumin and Cu(II) in methanol and sodium dodecyl sulfate (SDS) micelles was investigated using fluorescence spectroscopy and transient absorption spectroscopy. The Cu(II) ion exhibits a high efficiency in quenching the fluorescence of curcumin. By quantifying fluorescence quenching as a function of Cu(II) concentration, the complexation constants, K(1) and K(2), for the formation of the 1 : 1 and 1 : 2 Cu(II)-curcumin complexes, [Cu(II)-Cur](+) and [Cu(II)-Cur(2)], have been determined.
View Article and Find Full Text PDFDiamide linked γ-cyclodextrin (γ-CD) dimers are used to capture curcumin and suppress its decomposition in water. In this study, succinamide and urea linked γ-CD dimers joined through the C6(A) carbon on each γ-CD are used. The γ-CD dimers, 66γCD(2)su and 66γCD(2)ur, show a remarkable ability to suppress the decomposition of curcumin and extend its half-life from less than 30 min to greater than 16 h.
View Article and Find Full Text PDFMacromol Rapid Commun
February 2010
A close correllation between molecular-level interactions and macroscopic characteristics of polymer networks exists. The characteristics of the polymeric hydrogels assembled from β-cyclodextrin (β-CD) and adamantyl (AD) substituted poly(acrylate)s can be tailored through selective host-guest complexation between β-CD and AD substituents and their tethers. Dominantly, steric effects and competitive intra- and intermolecular host-guest complexation are found to control poly(acrylate) isomeric inter-strand linkage in polymer network formation.
View Article and Find Full Text PDF