The fabrication of multifunctional high-performance organic thin-film transistors as key elements in future logic circuits is a major research challenge. Here we demonstrate that a photoresponsive bi-functional field-effect transistor with carrier mobilities exceeding 0.2 cm(2) V(-1) s(-1) can be developed by incorporating photochromic molecules into an organic semiconductor matrix via a single-step solution processing deposition of a two components blend.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2014
Cost-effective, solution-processable organic photovoltaics (OPV) present an interesting alternative to inorganic silicon-based solar cells. However, one of the major remaining challenges of OPV devices is their lack of long-term operational stability, especially at elevated temperatures. The synthesis of a fullerene dumbbell and its use as an additive in the active layer of a PCDTBT:PCBM-based OPV device is reported.
View Article and Find Full Text PDFThe distribution of dopant sites in doped poly(3-hexylthiophene) (P3HT) thin films is characterized using optical absorption, grazing-incidence X-ray diffraction, and conducting atomic force microscopy (c-AFM). It is shown that dopant sites can be directly observed using c-AFM and that the solution temperature dramatically impacts phase separation and conductivity in spin-cast films.
View Article and Find Full Text PDFOrganic semiconductors are suitable candidates for printable, flexible and large-area electronics. Alongside attaining an improved device performance, to confer a multifunctional nature to the employed materials is key for organic-based logic applications. Here we report on the engineering of an electronic structure in a semiconducting film by blending two molecular components, a photochromic diarylethene derivative and a poly(3-hexylthiophene) (P3HT) matrix, to attain phototunable and bistable energy levels for the P3HT's hole transport.
View Article and Find Full Text PDF