In magnetic resonance imaging (MRI), the scan time for acquiring an image is relatively long, resulting in patient uncomfortable and error artifacts. Fortunately, the compressed sensing (CS) and parallel magnetic resonance imaging (pMRI) can reduce the scan time of the MRI without significantly compromising the quality of the images. It has been found that the combination of pMRI and CS can better improve the image reconstruction, which will accelerate the speed of MRI acquisition because the number of measurements is much smaller than that by pMRI.
View Article and Find Full Text PDFCompressive sampling (CS) has been commonly employed in the field of magnetic resonance imaging (MRI) to accurately reconstruct sparse and compressive signals. In a MR image, a large amount of encoded information focuses on the origin of the k-space. For the 2D Cartesian K-space MRI, under-sampling the frequency-encoding () dimension does not affect to the acquisition time, thus, only the phase-encoding () dimension can be exploited.
View Article and Find Full Text PDFMonitor and classify behavioral activities in cows is a helpful support solution for livestock based on the analysis of data from sensors attached to the animal. Accelerometers are particularly suited for monitoring cow behaviors due to small size, lightweight and high accuracy. Nevertheless, the interpretation of the data collected by such sensors when characterizing the type of behaviors still brings major challenges to developers, related to activity complexity (i.
View Article and Find Full Text PDF