Publications by authors named "Duc H Huynh"

HLA-B*15:02 screening before administering carbamazepine is recommended to prevent life-threatening hypersensitivity. However, the unavailability of a point-of-care device impedes this screening process. Our research group previously developed a two-step HLA-B*15:02 detection technique utilizing loop-mediated isothermal amplification (LAMP) on the tube, which requires two-stage device development to translate into a portable platform.

View Article and Find Full Text PDF

Malaria elimination is a global public health priority. To fulfil the demands of elimination diagnostics, we have developed an interdigitated electrode sensor platform targeting the Plasmodium falciparum Histidine Rich Protein 2 (PfHRP2) protein in saliva samples. A protocol for frequency-specific PfHRP2 detection in phosphate buffered saline was developed, yielding a sensitivity of 2.

View Article and Find Full Text PDF

Pre-treatment screening of individuals for human leukocyte antigens (HLA) HLA-B*57:01 is recommended for the prevention of life-threatening hypersensitivity reactions to abacavir, a drug widely prescribed for HIV treatment. However, the implementation of screening in clinical practice is hindered by the slow turnaround time and high cost of conventional HLA genotyping methods. We have developed a biosensor platform using interdigitated electrode (IDE) functionalized with a monoclonal antibody to detect cells expressing HLA-B*57:01.

View Article and Find Full Text PDF

Elimination of malaria is a global health priority. Detecting an asymptomatic carrier of parasites to receive treatment is an important step in achieving this goal. Current available tools for detection of malaria parasites are either expensive, lacking in sensitivity for asymptomatic carriers, or low in throughput.

View Article and Find Full Text PDF
Article Synopsis
  • Screening for the HLA-B*15:02 allele can prevent dangerous allergic reactions to carbamazepine, but traditional testing methods are costly and slow.
  • A new biosensor platform utilizing loop-mediated isothermal amplification (LAMP) allows for rapid and efficient detection of this allele without the need for DNA extraction or complex procedures.
  • In testing with 27 blood samples, this LAMP-IDE platform showed high sensitivity (92.9%) and good specificity (84.6%), indicating its potential for point-of-care applications to improve screening access.
View Article and Find Full Text PDF

Recently, it has been demonstrated that graphene nano-ribbons (GNRs) exhibit superior thermoelectric performance compared to graphene sheets. However, the underlying mechanism behind this enhancement has not been systematically investigated and significant opportunity remains for further enhancement of the thermoelectric performance of GNRs by optimizing their charge carrier concentration. In this work, we modulate the carrier concentration of graphene-based nano-structures using a gate voltage and investigate the resulting carrier-concentration-dependent thermoelectric parameters using the Boltzmann transport equations.

View Article and Find Full Text PDF

The early detection of colorectal cancer is vital for disease management and patient survival. Fecal hemoglobin detection is a widely-adopted method for screening and early diagnosis. Fecal Immunochemical Test (FIT) is favored over the older generation chemical based Fecal Occult Blood Test (FOBT) as it does not require dietary or drug restrictions, and is specific to human blood from the lower digestive tract.

View Article and Find Full Text PDF

The Gram-positive bacterium, Staphylococcus aureus (S. aureus), is a major pathogen responsible for a variety of infectious diseases ranging from cellulitis to more serious conditions such as septic arthritis and septicaemia. Timely treatment with appropriate antibiotic therapy is essential to ensure clinical defervescence and to prevent further complications such as infective endocarditis or organ impairment due to septic shock.

View Article and Find Full Text PDF

Graphene is an interesting material with a number of desirable electrical properties. Graphene-based negative differential resistance (NDR) devices hold great potential for enabling the implementation of several elements required in electronic circuits and systems. In this article we propose a novel device structure that exhibits NDR using single layer graphene that is able to be fabricated using standard lithography techniques.

View Article and Find Full Text PDF