has evolved multiple strategies to evade innate defenses of the mononuclear phagocyte. Recently, we reported the tandem repeat protein (TRP)120 effector functions as a Notch ligand mimetic and a ubiquitin ligase that degrades the nuclear tumor suppressor, F-box and WD repeat domain-containing 7, a negative regulator of Notch. The Notch intracellular domain (NICD) is known to inhibit apoptosis primarily by interacting with X-linked inhibitor of apoptosis rotein (XIAP) to prevent degradation.
View Article and Find Full Text PDFObligate intracellular bacteria in the order Rickettsiales are transmitted by arthropod vectors and cause life-threatening infections in humans and animals. While both type 1 and type 4 secretion systems (T1SS and T4SS) have been identified in this group, the most extensive studies of Rickettsiales T1SS and associated effectors have been performed in . These studies have uncovered important roles for the T1SS effectors in pathobiology and immunity.
View Article and Find Full Text PDFLipases, which catalyze the hydrolysis of long-chain triglycerides, diglycerides, and monoglycerides into free fatty acids and glycerol, participate in various biological pathways in fungi. In this study, we examined the biological functions and regulatory mechanisms of fungal lipases via two approaches. First, we performed a systemic functional characterization of 86 putative lipase-encoding genes in the plant-pathogenic fungus Fusarium graminearum.
View Article and Find Full Text PDFAs an obligately intracellular bacterial pathogen that selectively infects the mononuclear phagocyte, has evolved sophisticated mechanisms to subvert innate immune defenses. While the bacterium accomplishes this through a variety of mechanisms, a rapidly expanding body of evidence has revealed that has evolved survival strategies that are directed by the versatile, intrinsically disordered, 120 kDa tandem repeat protein (TRP120) effector. establishes infection by manipulating multiple evolutionarily conserved cellular signaling pathways through effector-host interactions to subvert innate immune defenses.
View Article and Find Full Text PDFUnlabelled: has evolved multiple strategies to evade innate defenses of the mononuclear phagocyte. Recently, we reported the TRP120 effector functions as a Notch ligand mimetic and a ubiquitin ligase that degrades the nuclear tumor suppressor, F-box and WD repeat domain-containing 7 (FBW7), a negative regulator of Notch. The Notch receptor intracellular domain (NICD) is known to inhibit apoptosis primarily by interacting with X-linked inhibitor of apoptosis protein (XIAP) to prevent degradation.
View Article and Find Full Text PDFEhrlichia chaffeensis evades innate host defenses by reprogramming the mononuclear phagocyte through mechanisms that involve the exploitation of multiple evolutionarily conserved cellular signaling pathways, including Notch. This immune evasion strategy is directed in part by tandem repeat protein (TRP) effectors. Specifically, the TRP120 effector activates and regulates Notch signaling through interactions with the Notch receptor and the negative regulator, F-Box and WD repeat domain-containing 7 (FBW7).
View Article and Find Full Text PDFExopolysaccharides (EPSs) are biological polymers secreted by microorganisms including Lactic acid bacteria (LAB) to cope with harsh environmental conditions. EPSs are one of the main components involved in the formation of extracellular biofilm matrix to protect microorganisms from adverse factors such as temperature, pH, antibiotics, host immune defenses, etc..
View Article and Find Full Text PDF, an obligate intracellular pathogen, undergoes a biphasic developmental cycle within a membrane-bound vacuole called the chlamydial inclusion. To facilitate interactions with the host cell, modifies the inclusion membrane with type III secreted proteins, called Incs. As with all chlamydial proteins, Incs are temporally expressed, modifying the chlamydial inclusion during the early and mid-developmental cycle.
View Article and Find Full Text PDFFungal sexual reproduction requires complex cellular differentiation processes of hyphal cells. The plant pathogenic fungus Fusarium graminearum produces fruiting bodies called perithecia via sexual reproduction, and perithecia forcibly discharge ascospores into the air for disease initiation and propagation. Lipid metabolism and accumulation are closely related to perithecium formation, yet the molecular mechanisms that regulate these processes are largely unknown.
View Article and Find Full Text PDFArsenite-resistance protein 2 (Ars2) is an important nuclear protein involved in various RNA metabolisms in animals and plants, but no Ars2 ortholog has been studied in filamentous fungi. Although it is an essential gene in most model eukaryotes, null mutants were viable in the plant pathogenic fungus . The deletion of resulted in pleiotropic defects in various fungal developmental processes.
View Article and Find Full Text PDFFusarium graminearum is a prominent plant pathogenic fungus causing Fusarium head blight in major cereal crops worldwide. To understand the molecular mechanisms underlying fungal development and virulence, large collections of F. graminearum mutants have been constructed.
View Article and Find Full Text PDFEukaryotic cells repress global translation and selectively upregulate stress response proteins by altering multiple steps in gene expression. In this study, genome-wide transcriptome analysis of cellular adaptation to thermal stress was performed on the plant pathogenic fungus Fusarium graminearum. The results revealed that profound alterations in gene expression were required for heat shock responses in F.
View Article and Find Full Text PDFThe Ccr4-Not complex is evolutionarily conserved and important for multiple cellular functions in eukaryotic cells. In this study, the biological roles of the FgNot3 subunit of this complex were investigated in the plant pathogenic fungus Fusarium graminearum. Deletion of FgNOT3 resulted in retarded vegetative growth, retarded spore germination, swollen hyphae, and hyper-branching.
View Article and Find Full Text PDF