Publications by authors named "Dubyk C"

Introduction: Survivin is an inhibitor of apoptosis that is proposed as a target for anti-cancer therapy because of its high expression in cancer cells. It has potential as a prognostic and predictive biomarker of response to radiation and systemic therapies. We report its expression in head and neck squamous cell carcinoma (HNSCC) and its correlation with treatment response and survival.

View Article and Find Full Text PDF

Malignant peripheral nerve sheath tumors (MPNSTs) are devastating sarcomas for which no effective medical therapies are available. Over 50% of MPSNTs are associated with mutations in NF1 tumor suppressor gene, resulting in activation of Ras and its effectors, including the Raf/Mek/Erk and PI3K/Akt/mTORC1 signaling cascades, and also the WNT/β-catenin pathway. As Group I p21-activated kinases (Group I Paks, PAK1/2/3) have been shown to modulate Ras-driven oncogenesis, we asked if these enzymes might regulate signaling in MPNSTs.

View Article and Find Full Text PDF

Clinical decision making for human papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSCC) is predominantly guided by disease stage and anatomic location, with few validated biomarkers. The epidermal growth factor receptor (EGFR) is an important therapeutic target, but its value in guiding therapeutic decision making remains ambiguous. We integrated analysis of clinically annotated tissue microarrays with analysis of data available through the TCGA, to investigate the idea that expression signatures involving EGFR, proteins regulating EGFR function, and core cell-cycle modulators might serve as prognostic or drug response-predictive biomarkers.

View Article and Find Full Text PDF

Locally advanced squamous cell carcinoma of the head and neck (SCCHN) that is not associated with human papillomavirus (HPV) has a poor prognosis in contrast to HPV-positive disease. To better understand the importance of RB1 activity in HPV-negative SCCHN, we investigated the prognostic value of inhibitory CDK4/6 phosphorylation of RB1 on threonine 356 (T356) in archival HPV-negative tumor specimens from patients who underwent surgical resection and adjuvant radiation. We benchmarked pT356RB1 to total RB1, Ki67, pT202/Y204ERK1/2, and TP53, as quantified by automatic quantitative analysis (AQUA), and correlated protein expression with tumor stage and grade.

View Article and Find Full Text PDF

Background: The purpose of this study was to report associations between p16 status, clinicopathologic characteristics, and outcomes for head and neck squamous cell carcinoma of unknown primary (CUP).

Methods: Specimens of squamous cell CUP were reanalyzed. Human papillomavirus (HPV) status was determined by p16 stain.

View Article and Find Full Text PDF

The Rho GTPases organize the actin cytoskeleton and are involved in cancer metastasis. Previously, we demonstrated that RhoC GTPase was required for PC-3 prostate cancer cell invasion. Targeted down-regulation of RhoC led to sustained activation of Rac1 GTPase and morphological, molecular and phenotypic changes reminiscent of epithelial to mesenchymal transition.

View Article and Find Full Text PDF

The most frequent site of metastasis in human prostate cancer (PCa) is the bone. Preferential adhesion of PCa cells to bone-specific factors may facilitate the selective metastasis of the skeleton. The most abundant protein within the skeleton is type I collagen.

View Article and Find Full Text PDF

Nearly 85% of the men who will die of prostate cancer (PCa) have skeletal metastases present. The ability of PCa cells to interact with the microenvironment determines the success of the tumor cell to form metastatic lesions. The ability to bind to human bone marrow endothelial (HBME) cells and undergo transendothelial cell migration are key steps in allowing the PCa cell to extravasate from the bone microvasculature and invade the bone stroma.

View Article and Find Full Text PDF

Background: The Rho GTPases comprise one of the eight subfamilies of the Ras superfamily of monomeric GTP-binding proteins and are involved in cytoskeletal organization. Previously, using a dominant negative construct, we demonstrated a role for RhoC GTPase in conferring invasive capabilities to PC-3 human prostate cancer cells. Further, we demonstrated that inactivation of RhoC led to morphological changes commensurate with epithelial to mesenchymal transition (EMT) and was accompanied by increased random, linear motility and decreased directed migration and invasion.

View Article and Find Full Text PDF